LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cupmtr.f
Go to the documentation of this file.
1*> \brief \b CUPMTR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUPMTR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cupmtr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cupmtr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cupmtr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
20* INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS, UPLO
24* INTEGER INFO, LDC, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX AP( * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CUPMTR overwrites the general complex M-by-N matrix C with
37*>
38*> SIDE = 'L' SIDE = 'R'
39*> TRANS = 'N': Q * C C * Q
40*> TRANS = 'C': Q**H * C C * Q**H
41*>
42*> where Q is a complex unitary matrix of order nq, with nq = m if
43*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
44*> nq-1 elementary reflectors, as returned by CHPTRD using packed
45*> storage:
46*>
47*> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
48*>
49*> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
50*> \endverbatim
51*
52* Arguments:
53* ==========
54*
55*> \param[in] SIDE
56*> \verbatim
57*> SIDE is CHARACTER*1
58*> = 'L': apply Q or Q**H from the Left;
59*> = 'R': apply Q or Q**H from the Right.
60*> \endverbatim
61*>
62*> \param[in] UPLO
63*> \verbatim
64*> UPLO is CHARACTER*1
65*> = 'U': Upper triangular packed storage used in previous
66*> call to CHPTRD;
67*> = 'L': Lower triangular packed storage used in previous
68*> call to CHPTRD.
69*> \endverbatim
70*>
71*> \param[in] TRANS
72*> \verbatim
73*> TRANS is CHARACTER*1
74*> = 'N': No transpose, apply Q;
75*> = 'C': Conjugate transpose, apply Q**H.
76*> \endverbatim
77*>
78*> \param[in] M
79*> \verbatim
80*> M is INTEGER
81*> The number of rows of the matrix C. M >= 0.
82*> \endverbatim
83*>
84*> \param[in] N
85*> \verbatim
86*> N is INTEGER
87*> The number of columns of the matrix C. N >= 0.
88*> \endverbatim
89*>
90*> \param[in] AP
91*> \verbatim
92*> AP is COMPLEX array, dimension
93*> (M*(M+1)/2) if SIDE = 'L'
94*> (N*(N+1)/2) if SIDE = 'R'
95*> The vectors which define the elementary reflectors, as
96*> returned by CHPTRD. AP is modified by the routine but
97*> restored on exit.
98*> \endverbatim
99*>
100*> \param[in] TAU
101*> \verbatim
102*> TAU is COMPLEX array, dimension (M-1) if SIDE = 'L'
103*> or (N-1) if SIDE = 'R'
104*> TAU(i) must contain the scalar factor of the elementary
105*> reflector H(i), as returned by CHPTRD.
106*> \endverbatim
107*>
108*> \param[in,out] C
109*> \verbatim
110*> C is COMPLEX array, dimension (LDC,N)
111*> On entry, the M-by-N matrix C.
112*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
113*> \endverbatim
114*>
115*> \param[in] LDC
116*> \verbatim
117*> LDC is INTEGER
118*> The leading dimension of the array C. LDC >= max(1,M).
119*> \endverbatim
120*>
121*> \param[out] WORK
122*> \verbatim
123*> WORK is COMPLEX array, dimension
124*> (N) if SIDE = 'L'
125*> (M) if SIDE = 'R'
126*> \endverbatim
127*>
128*> \param[out] INFO
129*> \verbatim
130*> INFO is INTEGER
131*> = 0: successful exit
132*> < 0: if INFO = -i, the i-th argument had an illegal value
133*> \endverbatim
134*
135* Authors:
136* ========
137*
138*> \author Univ. of Tennessee
139*> \author Univ. of California Berkeley
140*> \author Univ. of Colorado Denver
141*> \author NAG Ltd.
142*
143*> \ingroup upmtr
144*
145* =====================================================================
146 SUBROUTINE cupmtr( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC,
147 $ WORK,
148 $ INFO )
149*
150* -- LAPACK computational routine --
151* -- LAPACK is a software package provided by Univ. of Tennessee, --
152* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153*
154* .. Scalar Arguments ..
155 CHARACTER SIDE, TRANS, UPLO
156 INTEGER INFO, LDC, M, N
157* ..
158* .. Array Arguments ..
159 COMPLEX AP( * ), C( LDC, * ), TAU( * ), WORK( * )
160* ..
161*
162* =====================================================================
163*
164* .. Local Scalars ..
165 LOGICAL FORWRD, LEFT, NOTRAN, UPPER
166 INTEGER I, I1, I2, I3, IC, II, JC, MI, NI, NQ
167 COMPLEX TAUI
168* ..
169* .. External Functions ..
170 LOGICAL LSAME
171 EXTERNAL LSAME
172* ..
173* .. External Subroutines ..
174 EXTERNAL clarf1f, clarf1l, xerbla
175* ..
176* .. Intrinsic Functions ..
177 INTRINSIC conjg, max
178* ..
179* .. Executable Statements ..
180*
181* Test the input arguments
182*
183 info = 0
184 left = lsame( side, 'L' )
185 notran = lsame( trans, 'N' )
186 upper = lsame( uplo, 'U' )
187*
188* NQ is the order of Q
189*
190 IF( left ) THEN
191 nq = m
192 ELSE
193 nq = n
194 END IF
195 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
196 info = -1
197 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
198 info = -2
199 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
200 info = -3
201 ELSE IF( m.LT.0 ) THEN
202 info = -4
203 ELSE IF( n.LT.0 ) THEN
204 info = -5
205 ELSE IF( ldc.LT.max( 1, m ) ) THEN
206 info = -9
207 END IF
208 IF( info.NE.0 ) THEN
209 CALL xerbla( 'CUPMTR', -info )
210 RETURN
211 END IF
212*
213* Quick return if possible
214*
215 IF( m.EQ.0 .OR. n.EQ.0 )
216 $ RETURN
217*
218 IF( upper ) THEN
219*
220* Q was determined by a call to CHPTRD with UPLO = 'U'
221*
222 forwrd = ( left .AND. notran ) .OR.
223 $ ( .NOT.left .AND. .NOT.notran )
224*
225 IF( forwrd ) THEN
226 i1 = 1
227 i2 = nq - 1
228 i3 = 1
229 ii = 2
230 ELSE
231 i1 = nq - 1
232 i2 = 1
233 i3 = -1
234 ii = nq*( nq+1 ) / 2 - 1
235 END IF
236*
237 IF( left ) THEN
238 ni = n
239 ELSE
240 mi = m
241 END IF
242*
243 DO 10 i = i1, i2, i3
244 IF( left ) THEN
245*
246* H(i) or H(i)**H is applied to C(1:i,1:n)
247*
248 mi = i
249 ELSE
250*
251* H(i) or H(i)**H is applied to C(1:m,1:i)
252*
253 ni = i
254 END IF
255*
256* Apply H(i) or H(i)**H
257*
258 IF( notran ) THEN
259 taui = tau( i )
260 ELSE
261 taui = conjg( tau( i ) )
262 END IF
263 CALL clarf1l( side, mi, ni, ap( ii-i+1 ), 1, taui, c,
264 $ ldc, work )
265*
266 IF( forwrd ) THEN
267 ii = ii + i + 2
268 ELSE
269 ii = ii - i - 1
270 END IF
271 10 CONTINUE
272 ELSE
273*
274* Q was determined by a call to CHPTRD with UPLO = 'L'.
275*
276 forwrd = ( left .AND. .NOT.notran ) .OR.
277 $ ( .NOT.left .AND. notran )
278*
279 IF( forwrd ) THEN
280 i1 = 1
281 i2 = nq - 1
282 i3 = 1
283 ii = 2
284 ELSE
285 i1 = nq - 1
286 i2 = 1
287 i3 = -1
288 ii = nq*( nq+1 ) / 2 - 1
289 END IF
290*
291 IF( left ) THEN
292 ni = n
293 jc = 1
294 ELSE
295 mi = m
296 ic = 1
297 END IF
298*
299 DO 20 i = i1, i2, i3
300 IF( left ) THEN
301*
302* H(i) or H(i)**H is applied to C(i+1:m,1:n)
303*
304 mi = m - i
305 ic = i + 1
306 ELSE
307*
308* H(i) or H(i)**H is applied to C(1:m,i+1:n)
309*
310 ni = n - i
311 jc = i + 1
312 END IF
313*
314* Apply H(i) or H(i)**H
315*
316 IF( notran ) THEN
317 taui = tau( i )
318 ELSE
319 taui = conjg( tau( i ) )
320 END IF
321 CALL clarf1f( side, mi, ni, ap( ii ), 1, taui, c( ic,
322 $ jc ), ldc, work )
323*
324 IF( forwrd ) THEN
325 ii = ii + nq - i + 1
326 ELSE
327 ii = ii - nq + i - 2
328 END IF
329 20 CONTINUE
330 END IF
331 RETURN
332*
333* End of CUPMTR
334*
335 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine cupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
CUPMTR
Definition cupmtr.f:149