LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cggsvd3.f
Go to the documentation of this file.
1*> \brief <b> CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CGGSVD3 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd3.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd3.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd3.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
20* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
21* LWORK, RWORK, IWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
26* ..
27* .. Array Arguments ..
28* INTEGER IWORK( * )
29* REAL ALPHA( * ), BETA( * ), RWORK( * )
30* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
31* $ U( LDU, * ), V( LDV, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> CGGSVD3 computes the generalized singular value decomposition (GSVD)
41*> of an M-by-N complex matrix A and P-by-N complex matrix B:
42*>
43*> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
44*>
45*> where U, V and Q are unitary matrices.
46*> Let K+L = the effective numerical rank of the
47*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
48*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
49*> matrices and of the following structures, respectively:
50*>
51*> If M-K-L >= 0,
52*>
53*> K L
54*> D1 = K ( I 0 )
55*> L ( 0 C )
56*> M-K-L ( 0 0 )
57*>
58*> K L
59*> D2 = L ( 0 S )
60*> P-L ( 0 0 )
61*>
62*> N-K-L K L
63*> ( 0 R ) = K ( 0 R11 R12 )
64*> L ( 0 0 R22 )
65*>
66*> where
67*>
68*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
69*> S = diag( BETA(K+1), ... , BETA(K+L) ),
70*> C**2 + S**2 = I.
71*>
72*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
73*>
74*> If M-K-L < 0,
75*>
76*> K M-K K+L-M
77*> D1 = K ( I 0 0 )
78*> M-K ( 0 C 0 )
79*>
80*> K M-K K+L-M
81*> D2 = M-K ( 0 S 0 )
82*> K+L-M ( 0 0 I )
83*> P-L ( 0 0 0 )
84*>
85*> N-K-L K M-K K+L-M
86*> ( 0 R ) = K ( 0 R11 R12 R13 )
87*> M-K ( 0 0 R22 R23 )
88*> K+L-M ( 0 0 0 R33 )
89*>
90*> where
91*>
92*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
93*> S = diag( BETA(K+1), ... , BETA(M) ),
94*> C**2 + S**2 = I.
95*>
96*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
97*> ( 0 R22 R23 )
98*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
99*>
100*> The routine computes C, S, R, and optionally the unitary
101*> transformation matrices U, V and Q.
102*>
103*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
104*> A and B implicitly gives the SVD of A*inv(B):
105*> A*inv(B) = U*(D1*inv(D2))*V**H.
106*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
107*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
108*> be used to derive the solution of the eigenvalue problem:
109*> A**H*A x = lambda* B**H*B x.
110*> In some literature, the GSVD of A and B is presented in the form
111*> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
112*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
113*> ``diagonal''. The former GSVD form can be converted to the latter
114*> form by taking the nonsingular matrix X as
115*>
116*> X = Q*( I 0 )
117*> ( 0 inv(R) )
118*> \endverbatim
119*
120* Arguments:
121* ==========
122*
123*> \param[in] JOBU
124*> \verbatim
125*> JOBU is CHARACTER*1
126*> = 'U': Unitary matrix U is computed;
127*> = 'N': U is not computed.
128*> \endverbatim
129*>
130*> \param[in] JOBV
131*> \verbatim
132*> JOBV is CHARACTER*1
133*> = 'V': Unitary matrix V is computed;
134*> = 'N': V is not computed.
135*> \endverbatim
136*>
137*> \param[in] JOBQ
138*> \verbatim
139*> JOBQ is CHARACTER*1
140*> = 'Q': Unitary matrix Q is computed;
141*> = 'N': Q is not computed.
142*> \endverbatim
143*>
144*> \param[in] M
145*> \verbatim
146*> M is INTEGER
147*> The number of rows of the matrix A. M >= 0.
148*> \endverbatim
149*>
150*> \param[in] N
151*> \verbatim
152*> N is INTEGER
153*> The number of columns of the matrices A and B. N >= 0.
154*> \endverbatim
155*>
156*> \param[in] P
157*> \verbatim
158*> P is INTEGER
159*> The number of rows of the matrix B. P >= 0.
160*> \endverbatim
161*>
162*> \param[out] K
163*> \verbatim
164*> K is INTEGER
165*> \endverbatim
166*>
167*> \param[out] L
168*> \verbatim
169*> L is INTEGER
170*>
171*> On exit, K and L specify the dimension of the subblocks
172*> described in Purpose.
173*> K + L = effective numerical rank of (A**H,B**H)**H.
174*> \endverbatim
175*>
176*> \param[in,out] A
177*> \verbatim
178*> A is COMPLEX array, dimension (LDA,N)
179*> On entry, the M-by-N matrix A.
180*> On exit, A contains the triangular matrix R, or part of R.
181*> See Purpose for details.
182*> \endverbatim
183*>
184*> \param[in] LDA
185*> \verbatim
186*> LDA is INTEGER
187*> The leading dimension of the array A. LDA >= max(1,M).
188*> \endverbatim
189*>
190*> \param[in,out] B
191*> \verbatim
192*> B is COMPLEX array, dimension (LDB,N)
193*> On entry, the P-by-N matrix B.
194*> On exit, B contains part of the triangular matrix R if
195*> M-K-L < 0. See Purpose for details.
196*> \endverbatim
197*>
198*> \param[in] LDB
199*> \verbatim
200*> LDB is INTEGER
201*> The leading dimension of the array B. LDB >= max(1,P).
202*> \endverbatim
203*>
204*> \param[out] ALPHA
205*> \verbatim
206*> ALPHA is REAL array, dimension (N)
207*> \endverbatim
208*>
209*> \param[out] BETA
210*> \verbatim
211*> BETA is REAL array, dimension (N)
212*>
213*> On exit, ALPHA and BETA contain the generalized singular
214*> value pairs of A and B;
215*> ALPHA(1:K) = 1,
216*> BETA(1:K) = 0,
217*> and if M-K-L >= 0,
218*> ALPHA(K+1:K+L) = C,
219*> BETA(K+1:K+L) = S,
220*> or if M-K-L < 0,
221*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
222*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
223*> and
224*> ALPHA(K+L+1:N) = 0
225*> BETA(K+L+1:N) = 0
226*> \endverbatim
227*>
228*> \param[out] U
229*> \verbatim
230*> U is COMPLEX array, dimension (LDU,M)
231*> If JOBU = 'U', U contains the M-by-M unitary matrix U.
232*> If JOBU = 'N', U is not referenced.
233*> \endverbatim
234*>
235*> \param[in] LDU
236*> \verbatim
237*> LDU is INTEGER
238*> The leading dimension of the array U. LDU >= max(1,M) if
239*> JOBU = 'U'; LDU >= 1 otherwise.
240*> \endverbatim
241*>
242*> \param[out] V
243*> \verbatim
244*> V is COMPLEX array, dimension (LDV,P)
245*> If JOBV = 'V', V contains the P-by-P unitary matrix V.
246*> If JOBV = 'N', V is not referenced.
247*> \endverbatim
248*>
249*> \param[in] LDV
250*> \verbatim
251*> LDV is INTEGER
252*> The leading dimension of the array V. LDV >= max(1,P) if
253*> JOBV = 'V'; LDV >= 1 otherwise.
254*> \endverbatim
255*>
256*> \param[out] Q
257*> \verbatim
258*> Q is COMPLEX array, dimension (LDQ,N)
259*> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
260*> If JOBQ = 'N', Q is not referenced.
261*> \endverbatim
262*>
263*> \param[in] LDQ
264*> \verbatim
265*> LDQ is INTEGER
266*> The leading dimension of the array Q. LDQ >= max(1,N) if
267*> JOBQ = 'Q'; LDQ >= 1 otherwise.
268*> \endverbatim
269*>
270*> \param[out] WORK
271*> \verbatim
272*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
273*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
274*> \endverbatim
275*>
276*> \param[in] LWORK
277*> \verbatim
278*> LWORK is INTEGER
279*> The dimension of the array WORK. LWORK >= 1.
280*>
281*> If LWORK = -1, then a workspace query is assumed; the routine
282*> only calculates the optimal size of the WORK array, returns
283*> this value as the first entry of the WORK array, and no error
284*> message related to LWORK is issued by XERBLA.
285*> \endverbatim
286*>
287*> \param[out] RWORK
288*> \verbatim
289*> RWORK is REAL array, dimension (2*N)
290*> \endverbatim
291*>
292*> \param[out] IWORK
293*> \verbatim
294*> IWORK is INTEGER array, dimension (N)
295*> On exit, IWORK stores the sorting information. More
296*> precisely, the following loop will sort ALPHA
297*> for I = K+1, min(M,K+L)
298*> swap ALPHA(I) and ALPHA(IWORK(I))
299*> endfor
300*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
301*> \endverbatim
302*>
303*> \param[out] INFO
304*> \verbatim
305*> INFO is INTEGER
306*> = 0: successful exit.
307*> < 0: if INFO = -i, the i-th argument had an illegal value.
308*> > 0: if INFO = 1, the Jacobi-type procedure failed to
309*> converge. For further details, see subroutine CTGSJA.
310*> \endverbatim
311*
312*> \par Internal Parameters:
313* =========================
314*>
315*> \verbatim
316*> TOLA REAL
317*> TOLB REAL
318*> TOLA and TOLB are the thresholds to determine the effective
319*> rank of (A**H,B**H)**H. Generally, they are set to
320*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
321*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
322*> The size of TOLA and TOLB may affect the size of backward
323*> errors of the decomposition.
324*> \endverbatim
325*
326* Authors:
327* ========
328*
329*> \author Univ. of Tennessee
330*> \author Univ. of California Berkeley
331*> \author Univ. of Colorado Denver
332*> \author NAG Ltd.
333*
334*> \ingroup ggsvd3
335*
336*> \par Contributors:
337* ==================
338*>
339*> Ming Gu and Huan Ren, Computer Science Division, University of
340*> California at Berkeley, USA
341*>
342*
343*> \par Further Details:
344* =====================
345*>
346*> CGGSVD3 replaces the deprecated subroutine CGGSVD.
347*>
348* =====================================================================
349 SUBROUTINE cggsvd3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
350 $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
351 $ WORK, LWORK, RWORK, IWORK, INFO )
352*
353* -- LAPACK driver routine --
354* -- LAPACK is a software package provided by Univ. of Tennessee, --
355* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
356*
357* .. Scalar Arguments ..
358 CHARACTER JOBQ, JOBU, JOBV
359 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
360 $ lwork
361* ..
362* .. Array Arguments ..
363 INTEGER IWORK( * )
364 REAL ALPHA( * ), BETA( * ), RWORK( * )
365 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
366 $ u( ldu, * ), v( ldv, * ), work( * )
367* ..
368*
369* =====================================================================
370*
371* .. Local Scalars ..
372 LOGICAL WANTQ, WANTU, WANTV, LQUERY
373 INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
374 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
375* ..
376* .. External Functions ..
377 LOGICAL LSAME
378 REAL CLANGE, SLAMCH
379 EXTERNAL lsame, clange, slamch
380* ..
381* .. External Subroutines ..
382 EXTERNAL cggsvp3, ctgsja, scopy, xerbla
383* ..
384* .. Intrinsic Functions ..
385 INTRINSIC max, min
386* ..
387* .. Executable Statements ..
388*
389* Decode and test the input parameters
390*
391 wantu = lsame( jobu, 'U' )
392 wantv = lsame( jobv, 'V' )
393 wantq = lsame( jobq, 'Q' )
394 lquery = ( lwork.EQ.-1 )
395 lwkopt = 1
396*
397* Test the input arguments
398*
399 info = 0
400 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
401 info = -1
402 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
403 info = -2
404 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
405 info = -3
406 ELSE IF( m.LT.0 ) THEN
407 info = -4
408 ELSE IF( n.LT.0 ) THEN
409 info = -5
410 ELSE IF( p.LT.0 ) THEN
411 info = -6
412 ELSE IF( lda.LT.max( 1, m ) ) THEN
413 info = -10
414 ELSE IF( ldb.LT.max( 1, p ) ) THEN
415 info = -12
416 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
417 info = -16
418 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
419 info = -18
420 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
421 info = -20
422 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
423 info = -24
424 END IF
425*
426* Compute workspace
427*
428 IF( info.EQ.0 ) THEN
429 CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb,
430 $ tola,
431 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
432 $ work, work, -1, info )
433 lwkopt = n + int( work( 1 ) )
434 lwkopt = max( 2*n, lwkopt )
435 lwkopt = max( 1, lwkopt )
436 work( 1 ) = cmplx( lwkopt )
437 END IF
438*
439 IF( info.NE.0 ) THEN
440 CALL xerbla( 'CGGSVD3', -info )
441 RETURN
442 END IF
443 IF( lquery ) THEN
444 RETURN
445 ENDIF
446*
447* Compute the Frobenius norm of matrices A and B
448*
449 anorm = clange( '1', m, n, a, lda, rwork )
450 bnorm = clange( '1', p, n, b, ldb, rwork )
451*
452* Get machine precision and set up threshold for determining
453* the effective numerical rank of the matrices A and B.
454*
455 ulp = slamch( 'Precision' )
456 unfl = slamch( 'Safe Minimum' )
457 tola = real( max( m, n ) )*max( anorm, unfl )*ulp
458 tolb = real( max( p, n ) )*max( bnorm, unfl )*ulp
459*
460 CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
461 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
462 $ work, work( n+1 ), lwork-n, info )
463*
464* Compute the GSVD of two upper "triangular" matrices
465*
466 CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
467 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
468 $ work, ncycle, info )
469*
470* Sort the singular values and store the pivot indices in IWORK
471* Copy ALPHA to RWORK, then sort ALPHA in RWORK
472*
473 CALL scopy( n, alpha, 1, rwork, 1 )
474 ibnd = min( l, m-k )
475 DO 20 i = 1, ibnd
476*
477* Scan for largest ALPHA(K+I)
478*
479 isub = i
480 smax = rwork( k+i )
481 DO 10 j = i + 1, ibnd
482 temp = rwork( k+j )
483 IF( temp.GT.smax ) THEN
484 isub = j
485 smax = temp
486 END IF
487 10 CONTINUE
488 IF( isub.NE.i ) THEN
489 rwork( k+isub ) = rwork( k+i )
490 rwork( k+i ) = smax
491 iwork( k+i ) = k + isub
492 ELSE
493 iwork( k+i ) = k + i
494 END IF
495 20 CONTINUE
496*
497 work( 1 ) = cmplx( lwkopt )
498 RETURN
499*
500* End of CGGSVD3
501*
502 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine cggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, rwork, iwork, info)
CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices
Definition cggsvd3.f:352
subroutine cggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, lwork, info)
CGGSVP3
Definition cggsvp3.f:276
subroutine ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA
Definition ctgsja.f:377