LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cggsvd3()

subroutine cggsvd3 ( character  jobu,
character  jobv,
character  jobq,
integer  m,
integer  n,
integer  p,
integer  k,
integer  l,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
real, dimension( * )  alpha,
real, dimension( * )  beta,
complex, dimension( ldu, * )  u,
integer  ldu,
complex, dimension( ldv, * )  v,
integer  ldv,
complex, dimension( ldq, * )  q,
integer  ldq,
complex, dimension( * )  work,
integer  lwork,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  info 
)

CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Download CGGSVD3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGGSVD3 computes the generalized singular value decomposition (GSVD)
 of an M-by-N complex matrix A and P-by-N complex matrix B:

       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )

 where U, V and Q are unitary matrices.
 Let K+L = the effective numerical rank of the
 matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
 matrices and of the following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**H.
 If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
 equal to the CS decomposition of A and B. Furthermore, the GSVD can
 be used to derive the solution of the eigenvalue problem:
                      A**H*A x = lambda* B**H*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 ``diagonal''.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                       X = Q*(  I   0    )
                             (  0 inv(R) )
Parameters
[in]JOBU
          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.
[in]JOBV
          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.
[in]JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[out]K
          K is INTEGER
[out]L
          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**H,B**H)**H.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is COMPLEX array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains part of the triangular matrix R if
          M-K-L < 0.  See Purpose for details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]ALPHA
          ALPHA is REAL array, dimension (N)
[out]BETA
          BETA is REAL array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0
[out]U
          U is COMPLEX array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M unitary matrix U.
          If JOBU = 'N', U is not referenced.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
[out]V
          V is COMPLEX array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P unitary matrix V.
          If JOBV = 'N', V is not referenced.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
[out]Q
          Q is COMPLEX array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is REAL array, dimension (2*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine CTGSJA.
Internal Parameters:
  TOLA    REAL
  TOLB    REAL
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A**H,B**H)**H. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA
Further Details:
CGGSVD3 replaces the deprecated subroutine CGGSVD.

Definition at line 351 of file cggsvd3.f.

354*
355* -- LAPACK driver routine --
356* -- LAPACK is a software package provided by Univ. of Tennessee, --
357* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
358*
359* .. Scalar Arguments ..
360 CHARACTER JOBQ, JOBU, JOBV
361 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
362 $ LWORK
363* ..
364* .. Array Arguments ..
365 INTEGER IWORK( * )
366 REAL ALPHA( * ), BETA( * ), RWORK( * )
367 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
368 $ U( LDU, * ), V( LDV, * ), WORK( * )
369* ..
370*
371* =====================================================================
372*
373* .. Local Scalars ..
374 LOGICAL WANTQ, WANTU, WANTV, LQUERY
375 INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
376 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
377* ..
378* .. External Functions ..
379 LOGICAL LSAME
380 REAL CLANGE, SLAMCH
381 EXTERNAL lsame, clange, slamch
382* ..
383* .. External Subroutines ..
384 EXTERNAL cggsvp3, ctgsja, scopy, xerbla
385* ..
386* .. Intrinsic Functions ..
387 INTRINSIC max, min
388* ..
389* .. Executable Statements ..
390*
391* Decode and test the input parameters
392*
393 wantu = lsame( jobu, 'U' )
394 wantv = lsame( jobv, 'V' )
395 wantq = lsame( jobq, 'Q' )
396 lquery = ( lwork.EQ.-1 )
397 lwkopt = 1
398*
399* Test the input arguments
400*
401 info = 0
402 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
403 info = -1
404 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
405 info = -2
406 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
407 info = -3
408 ELSE IF( m.LT.0 ) THEN
409 info = -4
410 ELSE IF( n.LT.0 ) THEN
411 info = -5
412 ELSE IF( p.LT.0 ) THEN
413 info = -6
414 ELSE IF( lda.LT.max( 1, m ) ) THEN
415 info = -10
416 ELSE IF( ldb.LT.max( 1, p ) ) THEN
417 info = -12
418 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
419 info = -16
420 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
421 info = -18
422 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
423 info = -20
424 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
425 info = -24
426 END IF
427*
428* Compute workspace
429*
430 IF( info.EQ.0 ) THEN
431 CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
432 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
433 $ work, work, -1, info )
434 lwkopt = n + int( work( 1 ) )
435 lwkopt = max( 2*n, lwkopt )
436 lwkopt = max( 1, lwkopt )
437 work( 1 ) = cmplx( lwkopt )
438 END IF
439*
440 IF( info.NE.0 ) THEN
441 CALL xerbla( 'CGGSVD3', -info )
442 RETURN
443 END IF
444 IF( lquery ) THEN
445 RETURN
446 ENDIF
447*
448* Compute the Frobenius norm of matrices A and B
449*
450 anorm = clange( '1', m, n, a, lda, rwork )
451 bnorm = clange( '1', p, n, b, ldb, rwork )
452*
453* Get machine precision and set up threshold for determining
454* the effective numerical rank of the matrices A and B.
455*
456 ulp = slamch( 'Precision' )
457 unfl = slamch( 'Safe Minimum' )
458 tola = max( m, n )*max( anorm, unfl )*ulp
459 tolb = max( p, n )*max( bnorm, unfl )*ulp
460*
461 CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
462 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
463 $ work, work( n+1 ), lwork-n, info )
464*
465* Compute the GSVD of two upper "triangular" matrices
466*
467 CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
468 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
469 $ work, ncycle, info )
470*
471* Sort the singular values and store the pivot indices in IWORK
472* Copy ALPHA to RWORK, then sort ALPHA in RWORK
473*
474 CALL scopy( n, alpha, 1, rwork, 1 )
475 ibnd = min( l, m-k )
476 DO 20 i = 1, ibnd
477*
478* Scan for largest ALPHA(K+I)
479*
480 isub = i
481 smax = rwork( k+i )
482 DO 10 j = i + 1, ibnd
483 temp = rwork( k+j )
484 IF( temp.GT.smax ) THEN
485 isub = j
486 smax = temp
487 END IF
488 10 CONTINUE
489 IF( isub.NE.i ) THEN
490 rwork( k+isub ) = rwork( k+i )
491 rwork( k+i ) = smax
492 iwork( k+i ) = k + isub
493 ELSE
494 iwork( k+i ) = k + i
495 END IF
496 20 CONTINUE
497*
498 work( 1 ) = cmplx( lwkopt )
499 RETURN
500*
501* End of CGGSVD3
502*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine cggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, lwork, info)
CGGSVP3
Definition cggsvp3.f:278
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA
Definition ctgsja.f:379
Here is the call graph for this function:
Here is the caller graph for this function: