LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine cget02 | ( | character | trans, |
integer | m, | ||
integer | n, | ||
integer | nrhs, | ||
complex, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
complex, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real, dimension( * ) | rwork, | ||
real | resid ) |
CGET02
!> !> CGET02 computes the residual for a solution of a system of linear !> equations op(A)*X = B: !> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ), !> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the !> machine epsilon. !>
[in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of columns of B, the matrix of right hand sides. !> NRHS >= 0. !> |
[in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The original M x N matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in] | X | !> X is COMPLEX array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. If TRANS = 'N', !> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). !> |
[in,out] | B | !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side vectors for the system of !> linear equations. !> On exit, B is overwritten with the difference B - op(A)*X. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. IF TRANS = 'N', !> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). !> |
[out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
[out] | RESID | !> RESID is REAL !> The maximum over the number of right hand sides of !> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ). !> |
Definition at line 132 of file cget02.f.