LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cungbr.f
Go to the documentation of this file.
1*> \brief \b CUNGBR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUNGBR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungbr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungbr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungbr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER VECT
23* INTEGER INFO, K, LDA, LWORK, M, N
24* ..
25* .. Array Arguments ..
26* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> CUNGBR generates one of the complex unitary matrices Q or P**H
36*> determined by CGEBRD when reducing a complex matrix A to bidiagonal
37*> form: A = Q * B * P**H. Q and P**H are defined as products of
38*> elementary reflectors H(i) or G(i) respectively.
39*>
40*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
41*> is of order M:
42*> if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n
43*> columns of Q, where m >= n >= k;
44*> if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an
45*> M-by-M matrix.
46*>
47*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
48*> is of order N:
49*> if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m
50*> rows of P**H, where n >= m >= k;
51*> if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as
52*> an N-by-N matrix.
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] VECT
59*> \verbatim
60*> VECT is CHARACTER*1
61*> Specifies whether the matrix Q or the matrix P**H is
62*> required, as defined in the transformation applied by CGEBRD:
63*> = 'Q': generate Q;
64*> = 'P': generate P**H.
65*> \endverbatim
66*>
67*> \param[in] M
68*> \verbatim
69*> M is INTEGER
70*> The number of rows of the matrix Q or P**H to be returned.
71*> M >= 0.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The number of columns of the matrix Q or P**H to be returned.
78*> N >= 0.
79*> If VECT = 'Q', M >= N >= min(M,K);
80*> if VECT = 'P', N >= M >= min(N,K).
81*> \endverbatim
82*>
83*> \param[in] K
84*> \verbatim
85*> K is INTEGER
86*> If VECT = 'Q', the number of columns in the original M-by-K
87*> matrix reduced by CGEBRD.
88*> If VECT = 'P', the number of rows in the original K-by-N
89*> matrix reduced by CGEBRD.
90*> K >= 0.
91*> \endverbatim
92*>
93*> \param[in,out] A
94*> \verbatim
95*> A is COMPLEX array, dimension (LDA,N)
96*> On entry, the vectors which define the elementary reflectors,
97*> as returned by CGEBRD.
98*> On exit, the M-by-N matrix Q or P**H.
99*> \endverbatim
100*>
101*> \param[in] LDA
102*> \verbatim
103*> LDA is INTEGER
104*> The leading dimension of the array A. LDA >= M.
105*> \endverbatim
106*>
107*> \param[in] TAU
108*> \verbatim
109*> TAU is COMPLEX array, dimension
110*> (min(M,K)) if VECT = 'Q'
111*> (min(N,K)) if VECT = 'P'
112*> TAU(i) must contain the scalar factor of the elementary
113*> reflector H(i) or G(i), which determines Q or P**H, as
114*> returned by CGEBRD in its array argument TAUQ or TAUP.
115*> \endverbatim
116*>
117*> \param[out] WORK
118*> \verbatim
119*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
120*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
121*> \endverbatim
122*>
123*> \param[in] LWORK
124*> \verbatim
125*> LWORK is INTEGER
126*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
127*> For optimum performance LWORK >= min(M,N)*NB, where NB
128*> is the optimal blocksize.
129*>
130*> If LWORK = -1, then a workspace query is assumed; the routine
131*> only calculates the optimal size of the WORK array, returns
132*> this value as the first entry of the WORK array, and no error
133*> message related to LWORK is issued by XERBLA.
134*> \endverbatim
135*>
136*> \param[out] INFO
137*> \verbatim
138*> INFO is INTEGER
139*> = 0: successful exit
140*> < 0: if INFO = -i, the i-th argument had an illegal value
141*> \endverbatim
142*
143* Authors:
144* ========
145*
146*> \author Univ. of Tennessee
147*> \author Univ. of California Berkeley
148*> \author Univ. of Colorado Denver
149*> \author NAG Ltd.
150*
151*> \ingroup ungbr
152*
153* =====================================================================
154 SUBROUTINE cungbr( VECT, M, N, K, A, LDA, TAU, WORK, LWORK,
155 $ INFO )
156*
157* -- LAPACK computational routine --
158* -- LAPACK is a software package provided by Univ. of Tennessee, --
159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160*
161* .. Scalar Arguments ..
162 CHARACTER VECT
163 INTEGER INFO, K, LDA, LWORK, M, N
164* ..
165* .. Array Arguments ..
166 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
167* ..
168*
169* =====================================================================
170*
171* .. Parameters ..
172 COMPLEX ZERO, ONE
173 parameter( zero = ( 0.0e+0, 0.0e+0 ),
174 $ one = ( 1.0e+0, 0.0e+0 ) )
175* ..
176* .. Local Scalars ..
177 LOGICAL LQUERY, WANTQ
178 INTEGER I, IINFO, J, LWKOPT, MN
179* ..
180* .. External Functions ..
181 LOGICAL LSAME
182 REAL SROUNDUP_LWORK
183 EXTERNAL lsame, sroundup_lwork
184* ..
185* .. External Subroutines ..
186 EXTERNAL cunglq, cungqr, xerbla
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC max, min
190* ..
191* .. Executable Statements ..
192*
193* Test the input arguments
194*
195 info = 0
196 wantq = lsame( vect, 'Q' )
197 mn = min( m, n )
198 lquery = ( lwork.EQ.-1 )
199 IF( .NOT.wantq .AND. .NOT.lsame( vect, 'P' ) ) THEN
200 info = -1
201 ELSE IF( m.LT.0 ) THEN
202 info = -2
203 ELSE IF( n.LT.0 .OR. ( wantq .AND. ( n.GT.m .OR. n.LT.min( m,
204 $ k ) ) ) .OR. ( .NOT.wantq .AND. ( m.GT.n .OR. m.LT.
205 $ min( n, k ) ) ) ) THEN
206 info = -3
207 ELSE IF( k.LT.0 ) THEN
208 info = -4
209 ELSE IF( lda.LT.max( 1, m ) ) THEN
210 info = -6
211 ELSE IF( lwork.LT.max( 1, mn ) .AND. .NOT.lquery ) THEN
212 info = -9
213 END IF
214*
215 IF( info.EQ.0 ) THEN
216 work( 1 ) = 1
217 IF( wantq ) THEN
218 IF( m.GE.k ) THEN
219 CALL cungqr( m, n, k, a, lda, tau, work, -1, iinfo )
220 ELSE
221 IF( m.GT.1 ) THEN
222 CALL cungqr( m-1, m-1, m-1, a, lda, tau, work, -1,
223 $ iinfo )
224 END IF
225 END IF
226 ELSE
227 IF( k.LT.n ) THEN
228 CALL cunglq( m, n, k, a, lda, tau, work, -1, iinfo )
229 ELSE
230 IF( n.GT.1 ) THEN
231 CALL cunglq( n-1, n-1, n-1, a, lda, tau, work, -1,
232 $ iinfo )
233 END IF
234 END IF
235 END IF
236 lwkopt = int( work( 1 ) )
237 lwkopt = max(lwkopt, mn)
238 END IF
239*
240 IF( info.NE.0 ) THEN
241 CALL xerbla( 'CUNGBR', -info )
242 RETURN
243 ELSE IF( lquery ) THEN
244 work( 1 ) = sroundup_lwork(lwkopt)
245 RETURN
246 END IF
247*
248* Quick return if possible
249*
250 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
251 work( 1 ) = 1
252 RETURN
253 END IF
254*
255 IF( wantq ) THEN
256*
257* Form Q, determined by a call to CGEBRD to reduce an m-by-k
258* matrix
259*
260 IF( m.GE.k ) THEN
261*
262* If m >= k, assume m >= n >= k
263*
264 CALL cungqr( m, n, k, a, lda, tau, work, lwork, iinfo )
265*
266 ELSE
267*
268* If m < k, assume m = n
269*
270* Shift the vectors which define the elementary reflectors one
271* column to the right, and set the first row and column of Q
272* to those of the unit matrix
273*
274 DO 20 j = m, 2, -1
275 a( 1, j ) = zero
276 DO 10 i = j + 1, m
277 a( i, j ) = a( i, j-1 )
278 10 CONTINUE
279 20 CONTINUE
280 a( 1, 1 ) = one
281 DO 30 i = 2, m
282 a( i, 1 ) = zero
283 30 CONTINUE
284 IF( m.GT.1 ) THEN
285*
286* Form Q(2:m,2:m)
287*
288 CALL cungqr( m-1, m-1, m-1, a( 2, 2 ), lda, tau, work,
289 $ lwork, iinfo )
290 END IF
291 END IF
292 ELSE
293*
294* Form P**H, determined by a call to CGEBRD to reduce a k-by-n
295* matrix
296*
297 IF( k.LT.n ) THEN
298*
299* If k < n, assume k <= m <= n
300*
301 CALL cunglq( m, n, k, a, lda, tau, work, lwork, iinfo )
302*
303 ELSE
304*
305* If k >= n, assume m = n
306*
307* Shift the vectors which define the elementary reflectors one
308* row downward, and set the first row and column of P**H to
309* those of the unit matrix
310*
311 a( 1, 1 ) = one
312 DO 40 i = 2, n
313 a( i, 1 ) = zero
314 40 CONTINUE
315 DO 60 j = 2, n
316 DO 50 i = j - 1, 2, -1
317 a( i, j ) = a( i-1, j )
318 50 CONTINUE
319 a( 1, j ) = zero
320 60 CONTINUE
321 IF( n.GT.1 ) THEN
322*
323* Form P**H(2:n,2:n)
324*
325 CALL cunglq( n-1, n-1, n-1, a( 2, 2 ), lda, tau, work,
326 $ lwork, iinfo )
327 END IF
328 END IF
329 END IF
330 work( 1 ) = sroundup_lwork(lwkopt)
331 RETURN
332*
333* End of CUNGBR
334*
335 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cungbr(vect, m, n, k, a, lda, tau, work, lwork, info)
CUNGBR
Definition cungbr.f:156
subroutine cunglq(m, n, k, a, lda, tau, work, lwork, info)
CUNGLQ
Definition cunglq.f:125
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:126