LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zung2l()

subroutine zung2l ( integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( * ) work,
integer info )

ZUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm).

Download ZUNG2L + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZUNG2L generates an m by n complex matrix Q with orthonormal columns, !> which is defined as the last n columns of a product of k elementary !> reflectors of order m !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by ZGEQLF. !>
Parameters
[in]M
!> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix Q. M >= N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !>
[in,out]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (n-k+i)-th column must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGEQLF in the last k columns of its array !> argument A. !> On exit, the m-by-n matrix Q. !>
[in]LDA
!> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !>
[in]TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQLF. !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file zung2l.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX*16 ONE, ZERO
128 parameter( one = ( 1.0d+0, 0.0d+0 ),
129 $ zero = ( 0.0d+0, 0.0d+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, II, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL xerbla, zlarf1l, zscal
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'ZUNG2L', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( n.LE.0 )
162 $ RETURN
163*
164* Initialise columns 1:n-k to columns of the unit matrix
165*
166 DO 20 j = 1, n - k
167 DO 10 l = 1, m
168 a( l, j ) = zero
169 10 CONTINUE
170 a( m-n+j, j ) = one
171 20 CONTINUE
172*
173 DO 40 i = 1, k
174 ii = n - k + i
175*
176* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
177*
178 a( m-n+ii, ii ) = one
179 CALL zlarf1l( 'Left', m-n+ii, ii-1, a( 1, ii ), 1, tau( i ),
180 $ a,
181 $ lda, work )
182 CALL zscal( m-n+ii-1, -tau( i ), a( 1, ii ), 1 )
183 a( m-n+ii, ii ) = one - tau( i )
184*
185* Set A(m-k+i+1:m,n-k+i) to zero
186*
187 DO 30 l = m - n + ii + 1, m
188 a( l, ii ) = zero
189 30 CONTINUE
190 40 CONTINUE
191 RETURN
192*
193* End of ZUNG2L
194*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine zlarf1l(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1L applies an elementary reflector to a general rectangular
Definition zlarf1l.f:130
Here is the call graph for this function:
Here is the caller graph for this function: