LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zqpt01()

double precision function zqpt01 ( integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
complex*16, dimension( lda, * ) af,
integer lda,
complex*16, dimension( * ) tau,
integer, dimension( * ) jpvt,
complex*16, dimension( lwork ) work,
integer lwork )

ZQPT01

Purpose:
!>
!> ZQPT01 tests the QR-factorization with pivoting of a matrix A.  The
!> array AF contains the (possibly partial) QR-factorization of A, where
!> the upper triangle of AF(1:k,1:k) is a partial triangular factor,
!> the entries below the diagonal in the first k columns are the
!> Householder vectors, and the rest of AF contains a partially updated
!> matrix.
!>
!> This function returns ||A*P - Q*R|| / ( ||norm(A)||*eps*max(M,N) )
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrices A and AF.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrices A and AF.
!> 
[in]K
!>          K is INTEGER
!>          The number of columns of AF that have been reduced
!>          to upper triangular form.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA, N)
!>          The original matrix A.
!> 
[in]AF
!>          AF is COMPLEX*16 array, dimension (LDA,N)
!>          The (possibly partial) output of ZGEQPF.  The upper triangle
!>          of AF(1:k,1:k) is a partial triangular factor, the entries
!>          below the diagonal in the first k columns are the Householder
!>          vectors, and the rest of AF contains a partially updated
!>          matrix.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the arrays A and AF.
!> 
[in]TAU
!>          TAU is COMPLEX*16 array, dimension (K)
!>          Details of the Householder transformations as returned by
!>          ZGEQPF.
!> 
[in]JPVT
!>          JPVT is INTEGER array, dimension (N)
!>          Pivot information as returned by ZGEQPF.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= M*N+N.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 118 of file zqpt01.f.

120*
121* -- LAPACK test routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 INTEGER K, LDA, LWORK, M, N
127* ..
128* .. Array Arguments ..
129 INTEGER JPVT( * )
130 COMPLEX*16 A( LDA, * ), AF( LDA, * ), TAU( * ),
131 $ WORK( LWORK )
132* ..
133*
134* =====================================================================
135*
136* .. Parameters ..
137 DOUBLE PRECISION ZERO, ONE
138 parameter( zero = 0.0d0, one = 1.0d0 )
139* ..
140* .. Local Scalars ..
141 INTEGER I, INFO, J
142 DOUBLE PRECISION NORMA
143* ..
144* .. Local Arrays ..
145 DOUBLE PRECISION RWORK( 1 )
146* ..
147* .. External Functions ..
148 DOUBLE PRECISION DLAMCH, ZLANGE
149 EXTERNAL dlamch, zlange
150* ..
151* .. External Subroutines ..
152 EXTERNAL xerbla, zaxpy, zcopy, zunmqr
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC dble, dcmplx, max, min
156* ..
157* .. Executable Statements ..
158*
159 zqpt01 = zero
160*
161* Test if there is enough workspace
162*
163 IF( lwork.LT.m*n+n ) THEN
164 CALL xerbla( 'ZQPT01', 10 )
165 RETURN
166 END IF
167*
168* Quick return if possible
169*
170 IF( m.LE.0 .OR. n.LE.0 )
171 $ RETURN
172*
173 norma = zlange( 'One-norm', m, n, a, lda, rwork )
174*
175 DO j = 1, k
176 DO i = 1, min( j, m )
177 work( ( j-1 )*m+i ) = af( i, j )
178 END DO
179 DO i = j + 1, m
180 work( ( j-1 )*m+i ) = zero
181 END DO
182 END DO
183 DO j = k + 1, n
184 CALL zcopy( m, af( 1, j ), 1, work( ( j-1 )*m+1 ), 1 )
185 END DO
186*
187 CALL zunmqr( 'Left', 'No transpose', m, n, k, af, lda, tau, work,
188 $ m, work( m*n+1 ), lwork-m*n, info )
189*
190 DO j = 1, n
191*
192* Compare i-th column of QR and jpvt(i)-th column of A
193*
194 CALL zaxpy( m, dcmplx( -one ), a( 1, jpvt( j ) ), 1,
195 $ work( ( j-1 )*m+1 ), 1 )
196 END DO
197*
198 zqpt01 = zlange( 'One-norm', m, n, work, m, rwork ) /
199 $ ( dble( max( m, n ) )*dlamch( 'Epsilon' ) )
200 IF( norma.NE.zero )
201 $ zqpt01 = zqpt01 / norma
202*
203 RETURN
204*
205* End of ZQPT01
206*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:113
subroutine zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR
Definition zunmqr.f:165
double precision function zqpt01(m, n, k, a, af, lda, tau, jpvt, work, lwork)
ZQPT01
Definition zqpt01.f:120
Here is the call graph for this function:
Here is the caller graph for this function: