LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
double precision function zqpt01 | ( | integer | m, |
integer | n, | ||
integer | k, | ||
complex*16, dimension( lda, * ) | a, | ||
complex*16, dimension( lda, * ) | af, | ||
integer | lda, | ||
complex*16, dimension( * ) | tau, | ||
integer, dimension( * ) | jpvt, | ||
complex*16, dimension( lwork ) | work, | ||
integer | lwork ) |
ZQPT01
!> !> ZQPT01 tests the QR-factorization with pivoting of a matrix A. The !> array AF contains the (possibly partial) QR-factorization of A, where !> the upper triangle of AF(1:k,1:k) is a partial triangular factor, !> the entries below the diagonal in the first k columns are the !> Householder vectors, and the rest of AF contains a partially updated !> matrix. !> !> This function returns ||A*P - Q*R|| / ( ||norm(A)||*eps*max(M,N) ) !>
[in] | M | !> M is INTEGER !> The number of rows of the matrices A and AF. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrices A and AF. !> |
[in] | K | !> K is INTEGER !> The number of columns of AF that have been reduced !> to upper triangular form. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original matrix A. !> |
[in] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> The (possibly partial) output of ZGEQPF. The upper triangle !> of AF(1:k,1:k) is a partial triangular factor, the entries !> below the diagonal in the first k columns are the Householder !> vectors, and the rest of AF contains a partially updated !> matrix. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A and AF. !> |
[in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> Details of the Householder transformations as returned by !> ZGEQPF. !> |
[in] | JPVT | !> JPVT is INTEGER array, dimension (N) !> Pivot information as returned by ZGEQPF. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
[in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= M*N+N. !> |
Definition at line 118 of file zqpt01.f.