LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhegvx.f
Go to the documentation of this file.
1*> \brief \b ZHEGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHEGVX + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
20* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
21* LWORK, RWORK, IWORK, IFAIL, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBZ, RANGE, UPLO
25* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
26* DOUBLE PRECISION ABSTOL, VL, VU
27* ..
28* .. Array Arguments ..
29* INTEGER IFAIL( * ), IWORK( * )
30* DOUBLE PRECISION RWORK( * ), W( * )
31* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
32* $ Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
42*> of a complex generalized Hermitian-definite eigenproblem, of the form
43*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
44*> B are assumed to be Hermitian and B is also positive definite.
45*> Eigenvalues and eigenvectors can be selected by specifying either a
46*> range of values or a range of indices for the desired eigenvalues.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> Specifies the problem type to be solved:
56*> = 1: A*x = (lambda)*B*x
57*> = 2: A*B*x = (lambda)*x
58*> = 3: B*A*x = (lambda)*x
59*> \endverbatim
60*>
61*> \param[in] JOBZ
62*> \verbatim
63*> JOBZ is CHARACTER*1
64*> = 'N': Compute eigenvalues only;
65*> = 'V': Compute eigenvalues and eigenvectors.
66*> \endverbatim
67*>
68*> \param[in] RANGE
69*> \verbatim
70*> RANGE is CHARACTER*1
71*> = 'A': all eigenvalues will be found.
72*> = 'V': all eigenvalues in the half-open interval (VL,VU]
73*> will be found.
74*> = 'I': the IL-th through IU-th eigenvalues will be found.
75*> \endverbatim
76*>
77*> \param[in] UPLO
78*> \verbatim
79*> UPLO is CHARACTER*1
80*> = 'U': Upper triangles of A and B are stored;
81*> = 'L': Lower triangles of A and B are stored.
82*> \endverbatim
83*>
84*> \param[in] N
85*> \verbatim
86*> N is INTEGER
87*> The order of the matrices A and B. N >= 0.
88*> \endverbatim
89*>
90*> \param[in,out] A
91*> \verbatim
92*> A is COMPLEX*16 array, dimension (LDA, N)
93*> On entry, the Hermitian matrix A. If UPLO = 'U', the
94*> leading N-by-N upper triangular part of A contains the
95*> upper triangular part of the matrix A. If UPLO = 'L',
96*> the leading N-by-N lower triangular part of A contains
97*> the lower triangular part of the matrix A.
98*>
99*> On exit, the lower triangle (if UPLO='L') or the upper
100*> triangle (if UPLO='U') of A, including the diagonal, is
101*> destroyed.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*> LDA is INTEGER
107*> The leading dimension of the array A. LDA >= max(1,N).
108*> \endverbatim
109*>
110*> \param[in,out] B
111*> \verbatim
112*> B is COMPLEX*16 array, dimension (LDB, N)
113*> On entry, the Hermitian matrix B. If UPLO = 'U', the
114*> leading N-by-N upper triangular part of B contains the
115*> upper triangular part of the matrix B. If UPLO = 'L',
116*> the leading N-by-N lower triangular part of B contains
117*> the lower triangular part of the matrix B.
118*>
119*> On exit, if INFO <= N, the part of B containing the matrix is
120*> overwritten by the triangular factor U or L from the Cholesky
121*> factorization B = U**H*U or B = L*L**H.
122*> \endverbatim
123*>
124*> \param[in] LDB
125*> \verbatim
126*> LDB is INTEGER
127*> The leading dimension of the array B. LDB >= max(1,N).
128*> \endverbatim
129*>
130*> \param[in] VL
131*> \verbatim
132*> VL is DOUBLE PRECISION
133*>
134*> If RANGE='V', the lower bound of the interval to
135*> be searched for eigenvalues. VL < VU.
136*> Not referenced if RANGE = 'A' or 'I'.
137*> \endverbatim
138*>
139*> \param[in] VU
140*> \verbatim
141*> VU is DOUBLE PRECISION
142*>
143*> If RANGE='V', the upper bound of the interval to
144*> be searched for eigenvalues. VL < VU.
145*> Not referenced if RANGE = 'A' or 'I'.
146*> \endverbatim
147*>
148*> \param[in] IL
149*> \verbatim
150*> IL is INTEGER
151*>
152*> If RANGE='I', the index of the
153*> smallest eigenvalue to be returned.
154*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
155*> Not referenced if RANGE = 'A' or 'V'.
156*> \endverbatim
157*>
158*> \param[in] IU
159*> \verbatim
160*> IU is INTEGER
161*>
162*> If RANGE='I', the index of the
163*> largest eigenvalue to be returned.
164*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
165*> Not referenced if RANGE = 'A' or 'V'.
166*> \endverbatim
167*>
168*> \param[in] ABSTOL
169*> \verbatim
170*> ABSTOL is DOUBLE PRECISION
171*> The absolute error tolerance for the eigenvalues.
172*> An approximate eigenvalue is accepted as converged
173*> when it is determined to lie in an interval [a,b]
174*> of width less than or equal to
175*>
176*> ABSTOL + EPS * max( |a|,|b| ) ,
177*>
178*> where EPS is the machine precision. If ABSTOL is less than
179*> or equal to zero, then EPS*|T| will be used in its place,
180*> where |T| is the 1-norm of the tridiagonal matrix obtained
181*> by reducing C to tridiagonal form, where C is the symmetric
182*> matrix of the standard symmetric problem to which the
183*> generalized problem is transformed.
184*>
185*> Eigenvalues will be computed most accurately when ABSTOL is
186*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
187*> If this routine returns with INFO>0, indicating that some
188*> eigenvectors did not converge, try setting ABSTOL to
189*> 2*DLAMCH('S').
190*> \endverbatim
191*>
192*> \param[out] M
193*> \verbatim
194*> M is INTEGER
195*> The total number of eigenvalues found. 0 <= M <= N.
196*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
197*> \endverbatim
198*>
199*> \param[out] W
200*> \verbatim
201*> W is DOUBLE PRECISION array, dimension (N)
202*> The first M elements contain the selected
203*> eigenvalues in ascending order.
204*> \endverbatim
205*>
206*> \param[out] Z
207*> \verbatim
208*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
209*> If JOBZ = 'N', then Z is not referenced.
210*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211*> contain the orthonormal eigenvectors of the matrix A
212*> corresponding to the selected eigenvalues, with the i-th
213*> column of Z holding the eigenvector associated with W(i).
214*> The eigenvectors are normalized as follows:
215*> if ITYPE = 1 or 2, Z**T*B*Z = I;
216*> if ITYPE = 3, Z**T*inv(B)*Z = I.
217*>
218*> If an eigenvector fails to converge, then that column of Z
219*> contains the latest approximation to the eigenvector, and the
220*> index of the eigenvector is returned in IFAIL.
221*> Note: the user must ensure that at least max(1,M) columns are
222*> supplied in the array Z; if RANGE = 'V', the exact value of M
223*> is not known in advance and an upper bound must be used.
224*> \endverbatim
225*>
226*> \param[in] LDZ
227*> \verbatim
228*> LDZ is INTEGER
229*> The leading dimension of the array Z. LDZ >= 1, and if
230*> JOBZ = 'V', LDZ >= max(1,N).
231*> \endverbatim
232*>
233*> \param[out] WORK
234*> \verbatim
235*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
236*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
237*> \endverbatim
238*>
239*> \param[in] LWORK
240*> \verbatim
241*> LWORK is INTEGER
242*> The length of the array WORK. LWORK >= max(1,2*N).
243*> For optimal efficiency, LWORK >= (NB+1)*N,
244*> where NB is the blocksize for ZHETRD returned by ILAENV.
245*>
246*> If LWORK = -1, then a workspace query is assumed; the routine
247*> only calculates the optimal size of the WORK array, returns
248*> this value as the first entry of the WORK array, and no error
249*> message related to LWORK is issued by XERBLA.
250*> \endverbatim
251*>
252*> \param[out] RWORK
253*> \verbatim
254*> RWORK is DOUBLE PRECISION array, dimension (7*N)
255*> \endverbatim
256*>
257*> \param[out] IWORK
258*> \verbatim
259*> IWORK is INTEGER array, dimension (5*N)
260*> \endverbatim
261*>
262*> \param[out] IFAIL
263*> \verbatim
264*> IFAIL is INTEGER array, dimension (N)
265*> If JOBZ = 'V', then if INFO = 0, the first M elements of
266*> IFAIL are zero. If INFO > 0, then IFAIL contains the
267*> indices of the eigenvectors that failed to converge.
268*> If JOBZ = 'N', then IFAIL is not referenced.
269*> \endverbatim
270*>
271*> \param[out] INFO
272*> \verbatim
273*> INFO is INTEGER
274*> = 0: successful exit
275*> < 0: if INFO = -i, the i-th argument had an illegal value
276*> > 0: ZPOTRF or ZHEEVX returned an error code:
277*> <= N: if INFO = i, ZHEEVX failed to converge;
278*> i eigenvectors failed to converge. Their indices
279*> are stored in array IFAIL.
280*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
281*> principal minor of order i of B is not positive.
282*> The factorization of B could not be completed and
283*> no eigenvalues or eigenvectors were computed.
284*> \endverbatim
285*
286* Authors:
287* ========
288*
289*> \author Univ. of Tennessee
290*> \author Univ. of California Berkeley
291*> \author Univ. of Colorado Denver
292*> \author NAG Ltd.
293*
294*> \ingroup hegvx
295*
296*> \par Contributors:
297* ==================
298*>
299*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
300*
301* =====================================================================
302 SUBROUTINE zhegvx( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
303 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
304 $ LWORK, RWORK, IWORK, IFAIL, INFO )
305*
306* -- LAPACK driver routine --
307* -- LAPACK is a software package provided by Univ. of Tennessee, --
308* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
309*
310* .. Scalar Arguments ..
311 CHARACTER JOBZ, RANGE, UPLO
312 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
313 DOUBLE PRECISION ABSTOL, VL, VU
314* ..
315* .. Array Arguments ..
316 INTEGER IFAIL( * ), IWORK( * )
317 DOUBLE PRECISION RWORK( * ), W( * )
318 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
319 $ z( ldz, * )
320* ..
321*
322* =====================================================================
323*
324* .. Parameters ..
325 COMPLEX*16 CONE
326 PARAMETER ( CONE = ( 1.0d+0, 0.0d+0 ) )
327* ..
328* .. Local Scalars ..
329 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
330 CHARACTER TRANS
331 INTEGER LWKOPT, NB
332* ..
333* .. External Functions ..
334 LOGICAL LSAME
335 INTEGER ILAENV
336 EXTERNAL lsame, ilaenv
337* ..
338* .. External Subroutines ..
339 EXTERNAL xerbla, zheevx, zhegst, zpotrf, ztrmm,
340 $ ztrsm
341* ..
342* .. Intrinsic Functions ..
343 INTRINSIC max, min
344* ..
345* .. Executable Statements ..
346*
347* Test the input parameters.
348*
349 wantz = lsame( jobz, 'V' )
350 upper = lsame( uplo, 'U' )
351 alleig = lsame( range, 'A' )
352 valeig = lsame( range, 'V' )
353 indeig = lsame( range, 'I' )
354 lquery = ( lwork.EQ.-1 )
355*
356 info = 0
357 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
358 info = -1
359 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
360 info = -2
361 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
362 info = -3
363 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
364 info = -4
365 ELSE IF( n.LT.0 ) THEN
366 info = -5
367 ELSE IF( lda.LT.max( 1, n ) ) THEN
368 info = -7
369 ELSE IF( ldb.LT.max( 1, n ) ) THEN
370 info = -9
371 ELSE
372 IF( valeig ) THEN
373 IF( n.GT.0 .AND. vu.LE.vl )
374 $ info = -11
375 ELSE IF( indeig ) THEN
376 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
377 info = -12
378 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
379 info = -13
380 END IF
381 END IF
382 END IF
383 IF (info.EQ.0) THEN
384 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
385 info = -18
386 END IF
387 END IF
388*
389 IF( info.EQ.0 ) THEN
390 nb = ilaenv( 1, 'ZHETRD', uplo, n, -1, -1, -1 )
391 lwkopt = max( 1, ( nb + 1 )*n )
392 work( 1 ) = lwkopt
393*
394 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
395 info = -20
396 END IF
397 END IF
398*
399 IF( info.NE.0 ) THEN
400 CALL xerbla( 'ZHEGVX', -info )
401 RETURN
402 ELSE IF( lquery ) THEN
403 RETURN
404 END IF
405*
406* Quick return if possible
407*
408 m = 0
409 IF( n.EQ.0 ) THEN
410 RETURN
411 END IF
412*
413* Form a Cholesky factorization of B.
414*
415 CALL zpotrf( uplo, n, b, ldb, info )
416 IF( info.NE.0 ) THEN
417 info = n + info
418 RETURN
419 END IF
420*
421* Transform problem to standard eigenvalue problem and solve.
422*
423 CALL zhegst( itype, uplo, n, a, lda, b, ldb, info )
424 CALL zheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu,
425 $ abstol,
426 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
427 $ info )
428*
429 IF( wantz ) THEN
430*
431* Backtransform eigenvectors to the original problem.
432*
433 IF( info.GT.0 )
434 $ m = info - 1
435 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
436*
437* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
438* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
439*
440 IF( upper ) THEN
441 trans = 'N'
442 ELSE
443 trans = 'C'
444 END IF
445*
446 CALL ztrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
447 $ b,
448 $ ldb, z, ldz )
449*
450 ELSE IF( itype.EQ.3 ) THEN
451*
452* For B*A*x=(lambda)*x;
453* backtransform eigenvectors: x = L*y or U**H *y
454*
455 IF( upper ) THEN
456 trans = 'C'
457 ELSE
458 trans = 'N'
459 END IF
460*
461 CALL ztrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
462 $ b,
463 $ ldb, z, ldz )
464 END IF
465 END IF
466*
467* Set WORK(1) to optimal complex workspace size.
468*
469 work( 1 ) = lwkopt
470*
471 RETURN
472*
473* End of ZHEGVX
474*
475 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition zheevx.f:258
subroutine zhegst(itype, uplo, n, a, lda, b, ldb, info)
ZHEGST
Definition zhegst.f:126
subroutine zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
ZHEGVX
Definition zhegvx.f:305
subroutine zpotrf(uplo, n, a, lda, info)
ZPOTRF
Definition zpotrf.f:105
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
Definition ztrmm.f:177
subroutine ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRSM
Definition ztrsm.f:180