LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhegvx.f
Go to the documentation of this file.
1*> \brief \b ZHEGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHEGVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
22* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
23* LWORK, RWORK, IWORK, IFAIL, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBZ, RANGE, UPLO
27* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
28* DOUBLE PRECISION ABSTOL, VL, VU
29* ..
30* .. Array Arguments ..
31* INTEGER IFAIL( * ), IWORK( * )
32* DOUBLE PRECISION RWORK( * ), W( * )
33* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
34* $ Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
44*> of a complex generalized Hermitian-definite eigenproblem, of the form
45*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
46*> B are assumed to be Hermitian and B is also positive definite.
47*> Eigenvalues and eigenvectors can be selected by specifying either a
48*> range of values or a range of indices for the desired eigenvalues.
49*> \endverbatim
50*
51* Arguments:
52* ==========
53*
54*> \param[in] ITYPE
55*> \verbatim
56*> ITYPE is INTEGER
57*> Specifies the problem type to be solved:
58*> = 1: A*x = (lambda)*B*x
59*> = 2: A*B*x = (lambda)*x
60*> = 3: B*A*x = (lambda)*x
61*> \endverbatim
62*>
63*> \param[in] JOBZ
64*> \verbatim
65*> JOBZ is CHARACTER*1
66*> = 'N': Compute eigenvalues only;
67*> = 'V': Compute eigenvalues and eigenvectors.
68*> \endverbatim
69*>
70*> \param[in] RANGE
71*> \verbatim
72*> RANGE is CHARACTER*1
73*> = 'A': all eigenvalues will be found.
74*> = 'V': all eigenvalues in the half-open interval (VL,VU]
75*> will be found.
76*> = 'I': the IL-th through IU-th eigenvalues will be found.
77*> \endverbatim
78*>
79*> \param[in] UPLO
80*> \verbatim
81*> UPLO is CHARACTER*1
82*> = 'U': Upper triangles of A and B are stored;
83*> = 'L': Lower triangles of A and B are stored.
84*> \endverbatim
85*>
86*> \param[in] N
87*> \verbatim
88*> N is INTEGER
89*> The order of the matrices A and B. N >= 0.
90*> \endverbatim
91*>
92*> \param[in,out] A
93*> \verbatim
94*> A is COMPLEX*16 array, dimension (LDA, N)
95*> On entry, the Hermitian matrix A. If UPLO = 'U', the
96*> leading N-by-N upper triangular part of A contains the
97*> upper triangular part of the matrix A. If UPLO = 'L',
98*> the leading N-by-N lower triangular part of A contains
99*> the lower triangular part of the matrix A.
100*>
101*> On exit, the lower triangle (if UPLO='L') or the upper
102*> triangle (if UPLO='U') of A, including the diagonal, is
103*> destroyed.
104*> \endverbatim
105*>
106*> \param[in] LDA
107*> \verbatim
108*> LDA is INTEGER
109*> The leading dimension of the array A. LDA >= max(1,N).
110*> \endverbatim
111*>
112*> \param[in,out] B
113*> \verbatim
114*> B is COMPLEX*16 array, dimension (LDB, N)
115*> On entry, the Hermitian matrix B. If UPLO = 'U', the
116*> leading N-by-N upper triangular part of B contains the
117*> upper triangular part of the matrix B. If UPLO = 'L',
118*> the leading N-by-N lower triangular part of B contains
119*> the lower triangular part of the matrix B.
120*>
121*> On exit, if INFO <= N, the part of B containing the matrix is
122*> overwritten by the triangular factor U or L from the Cholesky
123*> factorization B = U**H*U or B = L*L**H.
124*> \endverbatim
125*>
126*> \param[in] LDB
127*> \verbatim
128*> LDB is INTEGER
129*> The leading dimension of the array B. LDB >= max(1,N).
130*> \endverbatim
131*>
132*> \param[in] VL
133*> \verbatim
134*> VL is DOUBLE PRECISION
135*>
136*> If RANGE='V', the lower bound of the interval to
137*> be searched for eigenvalues. VL < VU.
138*> Not referenced if RANGE = 'A' or 'I'.
139*> \endverbatim
140*>
141*> \param[in] VU
142*> \verbatim
143*> VU is DOUBLE PRECISION
144*>
145*> If RANGE='V', the upper bound of the interval to
146*> be searched for eigenvalues. VL < VU.
147*> Not referenced if RANGE = 'A' or 'I'.
148*> \endverbatim
149*>
150*> \param[in] IL
151*> \verbatim
152*> IL is INTEGER
153*>
154*> If RANGE='I', the index of the
155*> smallest eigenvalue to be returned.
156*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
157*> Not referenced if RANGE = 'A' or 'V'.
158*> \endverbatim
159*>
160*> \param[in] IU
161*> \verbatim
162*> IU is INTEGER
163*>
164*> If RANGE='I', the index of the
165*> largest eigenvalue to be returned.
166*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
167*> Not referenced if RANGE = 'A' or 'V'.
168*> \endverbatim
169*>
170*> \param[in] ABSTOL
171*> \verbatim
172*> ABSTOL is DOUBLE PRECISION
173*> The absolute error tolerance for the eigenvalues.
174*> An approximate eigenvalue is accepted as converged
175*> when it is determined to lie in an interval [a,b]
176*> of width less than or equal to
177*>
178*> ABSTOL + EPS * max( |a|,|b| ) ,
179*>
180*> where EPS is the machine precision. If ABSTOL is less than
181*> or equal to zero, then EPS*|T| will be used in its place,
182*> where |T| is the 1-norm of the tridiagonal matrix obtained
183*> by reducing C to tridiagonal form, where C is the symmetric
184*> matrix of the standard symmetric problem to which the
185*> generalized problem is transformed.
186*>
187*> Eigenvalues will be computed most accurately when ABSTOL is
188*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
189*> If this routine returns with INFO>0, indicating that some
190*> eigenvectors did not converge, try setting ABSTOL to
191*> 2*DLAMCH('S').
192*> \endverbatim
193*>
194*> \param[out] M
195*> \verbatim
196*> M is INTEGER
197*> The total number of eigenvalues found. 0 <= M <= N.
198*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
199*> \endverbatim
200*>
201*> \param[out] W
202*> \verbatim
203*> W is DOUBLE PRECISION array, dimension (N)
204*> The first M elements contain the selected
205*> eigenvalues in ascending order.
206*> \endverbatim
207*>
208*> \param[out] Z
209*> \verbatim
210*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
211*> If JOBZ = 'N', then Z is not referenced.
212*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
213*> contain the orthonormal eigenvectors of the matrix A
214*> corresponding to the selected eigenvalues, with the i-th
215*> column of Z holding the eigenvector associated with W(i).
216*> The eigenvectors are normalized as follows:
217*> if ITYPE = 1 or 2, Z**T*B*Z = I;
218*> if ITYPE = 3, Z**T*inv(B)*Z = I.
219*>
220*> If an eigenvector fails to converge, then that column of Z
221*> contains the latest approximation to the eigenvector, and the
222*> index of the eigenvector is returned in IFAIL.
223*> Note: the user must ensure that at least max(1,M) columns are
224*> supplied in the array Z; if RANGE = 'V', the exact value of M
225*> is not known in advance and an upper bound must be used.
226*> \endverbatim
227*>
228*> \param[in] LDZ
229*> \verbatim
230*> LDZ is INTEGER
231*> The leading dimension of the array Z. LDZ >= 1, and if
232*> JOBZ = 'V', LDZ >= max(1,N).
233*> \endverbatim
234*>
235*> \param[out] WORK
236*> \verbatim
237*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
238*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
239*> \endverbatim
240*>
241*> \param[in] LWORK
242*> \verbatim
243*> LWORK is INTEGER
244*> The length of the array WORK. LWORK >= max(1,2*N).
245*> For optimal efficiency, LWORK >= (NB+1)*N,
246*> where NB is the blocksize for ZHETRD returned by ILAENV.
247*>
248*> If LWORK = -1, then a workspace query is assumed; the routine
249*> only calculates the optimal size of the WORK array, returns
250*> this value as the first entry of the WORK array, and no error
251*> message related to LWORK is issued by XERBLA.
252*> \endverbatim
253*>
254*> \param[out] RWORK
255*> \verbatim
256*> RWORK is DOUBLE PRECISION array, dimension (7*N)
257*> \endverbatim
258*>
259*> \param[out] IWORK
260*> \verbatim
261*> IWORK is INTEGER array, dimension (5*N)
262*> \endverbatim
263*>
264*> \param[out] IFAIL
265*> \verbatim
266*> IFAIL is INTEGER array, dimension (N)
267*> If JOBZ = 'V', then if INFO = 0, the first M elements of
268*> IFAIL are zero. If INFO > 0, then IFAIL contains the
269*> indices of the eigenvectors that failed to converge.
270*> If JOBZ = 'N', then IFAIL is not referenced.
271*> \endverbatim
272*>
273*> \param[out] INFO
274*> \verbatim
275*> INFO is INTEGER
276*> = 0: successful exit
277*> < 0: if INFO = -i, the i-th argument had an illegal value
278*> > 0: ZPOTRF or ZHEEVX returned an error code:
279*> <= N: if INFO = i, ZHEEVX failed to converge;
280*> i eigenvectors failed to converge. Their indices
281*> are stored in array IFAIL.
282*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
283*> principal minor of order i of B is not positive.
284*> The factorization of B could not be completed and
285*> no eigenvalues or eigenvectors were computed.
286*> \endverbatim
287*
288* Authors:
289* ========
290*
291*> \author Univ. of Tennessee
292*> \author Univ. of California Berkeley
293*> \author Univ. of Colorado Denver
294*> \author NAG Ltd.
295*
296*> \ingroup hegvx
297*
298*> \par Contributors:
299* ==================
300*>
301*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
302*
303* =====================================================================
304 SUBROUTINE zhegvx( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
305 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
306 $ LWORK, RWORK, IWORK, IFAIL, INFO )
307*
308* -- LAPACK driver routine --
309* -- LAPACK is a software package provided by Univ. of Tennessee, --
310* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
311*
312* .. Scalar Arguments ..
313 CHARACTER JOBZ, RANGE, UPLO
314 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
315 DOUBLE PRECISION ABSTOL, VL, VU
316* ..
317* .. Array Arguments ..
318 INTEGER IFAIL( * ), IWORK( * )
319 DOUBLE PRECISION RWORK( * ), W( * )
320 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
321 $ z( ldz, * )
322* ..
323*
324* =====================================================================
325*
326* .. Parameters ..
327 COMPLEX*16 CONE
328 PARAMETER ( CONE = ( 1.0d+0, 0.0d+0 ) )
329* ..
330* .. Local Scalars ..
331 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
332 CHARACTER TRANS
333 INTEGER LWKOPT, NB
334* ..
335* .. External Functions ..
336 LOGICAL LSAME
337 INTEGER ILAENV
338 EXTERNAL lsame, ilaenv
339* ..
340* .. External Subroutines ..
341 EXTERNAL xerbla, zheevx, zhegst, zpotrf, ztrmm, ztrsm
342* ..
343* .. Intrinsic Functions ..
344 INTRINSIC max, min
345* ..
346* .. Executable Statements ..
347*
348* Test the input parameters.
349*
350 wantz = lsame( jobz, 'V' )
351 upper = lsame( uplo, 'U' )
352 alleig = lsame( range, 'A' )
353 valeig = lsame( range, 'V' )
354 indeig = lsame( range, 'I' )
355 lquery = ( lwork.EQ.-1 )
356*
357 info = 0
358 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
359 info = -1
360 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
361 info = -2
362 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
363 info = -3
364 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
365 info = -4
366 ELSE IF( n.LT.0 ) THEN
367 info = -5
368 ELSE IF( lda.LT.max( 1, n ) ) THEN
369 info = -7
370 ELSE IF( ldb.LT.max( 1, n ) ) THEN
371 info = -9
372 ELSE
373 IF( valeig ) THEN
374 IF( n.GT.0 .AND. vu.LE.vl )
375 $ info = -11
376 ELSE IF( indeig ) THEN
377 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
378 info = -12
379 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
380 info = -13
381 END IF
382 END IF
383 END IF
384 IF (info.EQ.0) THEN
385 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
386 info = -18
387 END IF
388 END IF
389*
390 IF( info.EQ.0 ) THEN
391 nb = ilaenv( 1, 'ZHETRD', uplo, n, -1, -1, -1 )
392 lwkopt = max( 1, ( nb + 1 )*n )
393 work( 1 ) = lwkopt
394*
395 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
396 info = -20
397 END IF
398 END IF
399*
400 IF( info.NE.0 ) THEN
401 CALL xerbla( 'ZHEGVX', -info )
402 RETURN
403 ELSE IF( lquery ) THEN
404 RETURN
405 END IF
406*
407* Quick return if possible
408*
409 m = 0
410 IF( n.EQ.0 ) THEN
411 RETURN
412 END IF
413*
414* Form a Cholesky factorization of B.
415*
416 CALL zpotrf( uplo, n, b, ldb, info )
417 IF( info.NE.0 ) THEN
418 info = n + info
419 RETURN
420 END IF
421*
422* Transform problem to standard eigenvalue problem and solve.
423*
424 CALL zhegst( itype, uplo, n, a, lda, b, ldb, info )
425 CALL zheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
426 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
427 $ info )
428*
429 IF( wantz ) THEN
430*
431* Backtransform eigenvectors to the original problem.
432*
433 IF( info.GT.0 )
434 $ m = info - 1
435 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
436*
437* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
438* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
439*
440 IF( upper ) THEN
441 trans = 'N'
442 ELSE
443 trans = 'C'
444 END IF
445*
446 CALL ztrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
447 $ ldb, z, ldz )
448*
449 ELSE IF( itype.EQ.3 ) THEN
450*
451* For B*A*x=(lambda)*x;
452* backtransform eigenvectors: x = L*y or U**H *y
453*
454 IF( upper ) THEN
455 trans = 'C'
456 ELSE
457 trans = 'N'
458 END IF
459*
460 CALL ztrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
461 $ ldb, z, ldz )
462 END IF
463 END IF
464*
465* Set WORK(1) to optimal complex workspace size.
466*
467 work( 1 ) = lwkopt
468*
469 RETURN
470*
471* End of ZHEGVX
472*
473 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition zheevx.f:259
subroutine zhegst(itype, uplo, n, a, lda, b, ldb, info)
ZHEGST
Definition zhegst.f:128
subroutine zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
ZHEGVX
Definition zhegvx.f:307
subroutine zpotrf(uplo, n, a, lda, info)
ZPOTRF
Definition zpotrf.f:107
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
Definition ztrmm.f:177
subroutine ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRSM
Definition ztrsm.f:180