LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chbevd_2stage.f
Go to the documentation of this file.
1*> \brief <b> CHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* @generated from zhbevd_2stage.f, fortran z -> c, Sat Nov 5 23:18:17 2016
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download CHBEVD_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbevd_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbevd_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbevd_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE CHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
24* WORK, LWORK, RWORK, LRWORK, IWORK,
25* LIWORK, INFO )
26*
27* IMPLICIT NONE
28*
29* .. Scalar Arguments ..
30* CHARACTER JOBZ, UPLO
31* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
32* ..
33* .. Array Arguments ..
34* INTEGER IWORK( * )
35* REAL RWORK( * ), W( * )
36* COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )
37* ..
38*
39*
40*> \par Purpose:
41* =============
42*>
43*> \verbatim
44*>
45*> CHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
46*> a complex Hermitian band matrix A using the 2stage technique for
47*> the reduction to tridiagonal. If eigenvectors are desired, it
48*> uses a divide and conquer algorithm.
49*>
50*> The divide and conquer algorithm makes very mild assumptions about
51*> floating point arithmetic. It will work on machines with a guard
52*> digit in add/subtract, or on those binary machines without guard
53*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
54*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
55*> without guard digits, but we know of none.
56*> \endverbatim
57*
58* Arguments:
59* ==========
60*
61*> \param[in] JOBZ
62*> \verbatim
63*> JOBZ is CHARACTER*1
64*> = 'N': Compute eigenvalues only;
65*> = 'V': Compute eigenvalues and eigenvectors.
66*> Not available in this release.
67*> \endverbatim
68*>
69*> \param[in] UPLO
70*> \verbatim
71*> UPLO is CHARACTER*1
72*> = 'U': Upper triangle of A is stored;
73*> = 'L': Lower triangle of A is stored.
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The order of the matrix A. N >= 0.
80*> \endverbatim
81*>
82*> \param[in] KD
83*> \verbatim
84*> KD is INTEGER
85*> The number of superdiagonals of the matrix A if UPLO = 'U',
86*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
87*> \endverbatim
88*>
89*> \param[in,out] AB
90*> \verbatim
91*> AB is COMPLEX array, dimension (LDAB, N)
92*> On entry, the upper or lower triangle of the Hermitian band
93*> matrix A, stored in the first KD+1 rows of the array. The
94*> j-th column of A is stored in the j-th column of the array AB
95*> as follows:
96*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
97*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
98*>
99*> On exit, AB is overwritten by values generated during the
100*> reduction to tridiagonal form. If UPLO = 'U', the first
101*> superdiagonal and the diagonal of the tridiagonal matrix T
102*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
103*> the diagonal and first subdiagonal of T are returned in the
104*> first two rows of AB.
105*> \endverbatim
106*>
107*> \param[in] LDAB
108*> \verbatim
109*> LDAB is INTEGER
110*> The leading dimension of the array AB. LDAB >= KD + 1.
111*> \endverbatim
112*>
113*> \param[out] W
114*> \verbatim
115*> W is REAL array, dimension (N)
116*> If INFO = 0, the eigenvalues in ascending order.
117*> \endverbatim
118*>
119*> \param[out] Z
120*> \verbatim
121*> Z is COMPLEX array, dimension (LDZ, N)
122*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
123*> eigenvectors of the matrix A, with the i-th column of Z
124*> holding the eigenvector associated with W(i).
125*> If JOBZ = 'N', then Z is not referenced.
126*> \endverbatim
127*>
128*> \param[in] LDZ
129*> \verbatim
130*> LDZ is INTEGER
131*> The leading dimension of the array Z. LDZ >= 1, and if
132*> JOBZ = 'V', LDZ >= max(1,N).
133*> \endverbatim
134*>
135*> \param[out] WORK
136*> \verbatim
137*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
138*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
139*> \endverbatim
140*>
141*> \param[in] LWORK
142*> \verbatim
143*> LWORK is INTEGER
144*> The length of the array WORK. LWORK >= 1, when N <= 1;
145*> otherwise
146*> If JOBZ = 'N' and N > 1, LWORK must be queried.
147*> LWORK = MAX(1, dimension) where
148*> dimension = (2KD+1)*N + KD*NTHREADS
149*> where KD is the size of the band.
150*> NTHREADS is the number of threads used when
151*> openMP compilation is enabled, otherwise =1.
152*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
153*>
154*> If LWORK = -1, then a workspace query is assumed; the routine
155*> only calculates the optimal sizes of the WORK, RWORK and
156*> IWORK arrays, returns these values as the first entries of
157*> the WORK, RWORK and IWORK arrays, and no error message
158*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
159*> \endverbatim
160*>
161*> \param[out] RWORK
162*> \verbatim
163*> RWORK is REAL array,
164*> dimension (LRWORK)
165*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
166*> \endverbatim
167*>
168*> \param[in] LRWORK
169*> \verbatim
170*> LRWORK is INTEGER
171*> The dimension of array RWORK.
172*> If N <= 1, LRWORK must be at least 1.
173*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
174*> If JOBZ = 'V' and N > 1, LRWORK must be at least
175*> 1 + 5*N + 2*N**2.
176*>
177*> If LRWORK = -1, then a workspace query is assumed; the
178*> routine only calculates the optimal sizes of the WORK, RWORK
179*> and IWORK arrays, returns these values as the first entries
180*> of the WORK, RWORK and IWORK arrays, and no error message
181*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
182*> \endverbatim
183*>
184*> \param[out] IWORK
185*> \verbatim
186*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
187*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
188*> \endverbatim
189*>
190*> \param[in] LIWORK
191*> \verbatim
192*> LIWORK is INTEGER
193*> The dimension of array IWORK.
194*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
195*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
196*>
197*> If LIWORK = -1, then a workspace query is assumed; the
198*> routine only calculates the optimal sizes of the WORK, RWORK
199*> and IWORK arrays, returns these values as the first entries
200*> of the WORK, RWORK and IWORK arrays, and no error message
201*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
202*> \endverbatim
203*>
204*> \param[out] INFO
205*> \verbatim
206*> INFO is INTEGER
207*> = 0: successful exit.
208*> < 0: if INFO = -i, the i-th argument had an illegal value.
209*> > 0: if INFO = i, the algorithm failed to converge; i
210*> off-diagonal elements of an intermediate tridiagonal
211*> form did not converge to zero.
212*> \endverbatim
213*
214* Authors:
215* ========
216*
217*> \author Univ. of Tennessee
218*> \author Univ. of California Berkeley
219*> \author Univ. of Colorado Denver
220*> \author NAG Ltd.
221*
222*> \ingroup complexOTHEReigen
223*
224*> \par Further Details:
225* =====================
226*>
227*> \verbatim
228*>
229*> All details about the 2stage techniques are available in:
230*>
231*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
232*> Parallel reduction to condensed forms for symmetric eigenvalue problems
233*> using aggregated fine-grained and memory-aware kernels. In Proceedings
234*> of 2011 International Conference for High Performance Computing,
235*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
236*> Article 8 , 11 pages.
237*> http://doi.acm.org/10.1145/2063384.2063394
238*>
239*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
240*> An improved parallel singular value algorithm and its implementation
241*> for multicore hardware, In Proceedings of 2013 International Conference
242*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
243*> Denver, Colorado, USA, 2013.
244*> Article 90, 12 pages.
245*> http://doi.acm.org/10.1145/2503210.2503292
246*>
247*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
248*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
249*> calculations based on fine-grained memory aware tasks.
250*> International Journal of High Performance Computing Applications.
251*> Volume 28 Issue 2, Pages 196-209, May 2014.
252*> http://hpc.sagepub.com/content/28/2/196
253*>
254*> \endverbatim
255*
256* =====================================================================
257 SUBROUTINE chbevd_2stage( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
258 $ WORK, LWORK, RWORK, LRWORK, IWORK,
259 $ LIWORK, INFO )
260*
261 IMPLICIT NONE
262*
263* -- LAPACK driver routine --
264* -- LAPACK is a software package provided by Univ. of Tennessee, --
265* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
266*
267* .. Scalar Arguments ..
268 CHARACTER JOBZ, UPLO
269 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
270* ..
271* .. Array Arguments ..
272 INTEGER IWORK( * )
273 REAL RWORK( * ), W( * )
274 COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )
275* ..
276*
277* =====================================================================
278*
279* .. Parameters ..
280 REAL ZERO, ONE
281 PARAMETER ( ZERO = 0.0e0, one = 1.0e0 )
282 COMPLEX CZERO, CONE
283 parameter( czero = ( 0.0e0, 0.0e0 ),
284 $ cone = ( 1.0e0, 0.0e0 ) )
285* ..
286* .. Local Scalars ..
287 LOGICAL LOWER, LQUERY, WANTZ
288 INTEGER IINFO, IMAX, INDE, INDWK2, INDRWK, ISCALE,
289 $ llwork, indwk, lhtrd, lwtrd, ib, indhous,
290 $ liwmin, llrwk, llwk2, lrwmin, lwmin
291 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
292 $ SMLNUM
293* ..
294* .. External Functions ..
295 LOGICAL LSAME
296 INTEGER ILAENV2STAGE
297 REAL SLAMCH, CLANHB
298 EXTERNAL lsame, slamch, clanhb, ilaenv2stage
299* ..
300* .. External Subroutines ..
301 EXTERNAL sscal, ssterf, xerbla, cgemm, clacpy,
303* ..
304* .. Intrinsic Functions ..
305 INTRINSIC real, sqrt
306* ..
307* .. Executable Statements ..
308*
309* Test the input parameters.
310*
311 wantz = lsame( jobz, 'V' )
312 lower = lsame( uplo, 'L' )
313 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 .OR. lrwork.EQ.-1 )
314*
315 info = 0
316 IF( n.LE.1 ) THEN
317 lwmin = 1
318 lrwmin = 1
319 liwmin = 1
320 ELSE
321 ib = ilaenv2stage( 2, 'CHETRD_HB2ST', jobz, n, kd, -1, -1 )
322 lhtrd = ilaenv2stage( 3, 'CHETRD_HB2ST', jobz, n, kd, ib, -1 )
323 lwtrd = ilaenv2stage( 4, 'CHETRD_HB2ST', jobz, n, kd, ib, -1 )
324 IF( wantz ) THEN
325 lwmin = 2*n**2
326 lrwmin = 1 + 5*n + 2*n**2
327 liwmin = 3 + 5*n
328 ELSE
329 lwmin = max( n, lhtrd + lwtrd )
330 lrwmin = n
331 liwmin = 1
332 END IF
333 END IF
334 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
335 info = -1
336 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
337 info = -2
338 ELSE IF( n.LT.0 ) THEN
339 info = -3
340 ELSE IF( kd.LT.0 ) THEN
341 info = -4
342 ELSE IF( ldab.LT.kd+1 ) THEN
343 info = -6
344 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
345 info = -9
346 END IF
347*
348 IF( info.EQ.0 ) THEN
349 work( 1 ) = lwmin
350 rwork( 1 ) = lrwmin
351 iwork( 1 ) = liwmin
352*
353 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
354 info = -11
355 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
356 info = -13
357 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
358 info = -15
359 END IF
360 END IF
361*
362 IF( info.NE.0 ) THEN
363 CALL xerbla( 'CHBEVD_2STAGE', -info )
364 RETURN
365 ELSE IF( lquery ) THEN
366 RETURN
367 END IF
368*
369* Quick return if possible
370*
371 IF( n.EQ.0 )
372 $ RETURN
373*
374 IF( n.EQ.1 ) THEN
375 w( 1 ) = real( ab( 1, 1 ) )
376 IF( wantz )
377 $ z( 1, 1 ) = cone
378 RETURN
379 END IF
380*
381* Get machine constants.
382*
383 safmin = slamch( 'Safe minimum' )
384 eps = slamch( 'Precision' )
385 smlnum = safmin / eps
386 bignum = one / smlnum
387 rmin = sqrt( smlnum )
388 rmax = sqrt( bignum )
389*
390* Scale matrix to allowable range, if necessary.
391*
392 anrm = clanhb( 'M', uplo, n, kd, ab, ldab, rwork )
393 iscale = 0
394 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
395 iscale = 1
396 sigma = rmin / anrm
397 ELSE IF( anrm.GT.rmax ) THEN
398 iscale = 1
399 sigma = rmax / anrm
400 END IF
401 IF( iscale.EQ.1 ) THEN
402 IF( lower ) THEN
403 CALL clascl( 'B', kd, kd, one, sigma, n, n, ab, ldab, info )
404 ELSE
405 CALL clascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab, info )
406 END IF
407 END IF
408*
409* Call CHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
410*
411 inde = 1
412 indrwk = inde + n
413 llrwk = lrwork - indrwk + 1
414 indhous = 1
415 indwk = indhous + lhtrd
416 llwork = lwork - indwk + 1
417 indwk2 = indwk + n*n
418 llwk2 = lwork - indwk2 + 1
419*
420 CALL chetrd_hb2st( "N", jobz, uplo, n, kd, ab, ldab, w,
421 $ rwork( inde ), work( indhous ), lhtrd,
422 $ work( indwk ), llwork, iinfo )
423*
424* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC.
425*
426 IF( .NOT.wantz ) THEN
427 CALL ssterf( n, w, rwork( inde ), info )
428 ELSE
429 CALL cstedc( 'I', n, w, rwork( inde ), work, n, work( indwk2 ),
430 $ llwk2, rwork( indrwk ), llrwk, iwork, liwork,
431 $ info )
432 CALL cgemm( 'N', 'N', n, n, n, cone, z, ldz, work, n, czero,
433 $ work( indwk2 ), n )
434 CALL clacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
435 END IF
436*
437* If matrix was scaled, then rescale eigenvalues appropriately.
438*
439 IF( iscale.EQ.1 ) THEN
440 IF( info.EQ.0 ) THEN
441 imax = n
442 ELSE
443 imax = info - 1
444 END IF
445 CALL sscal( imax, one / sigma, w, 1 )
446 END IF
447*
448 work( 1 ) = lwmin
449 rwork( 1 ) = lrwmin
450 iwork( 1 ) = liwmin
451 RETURN
452*
453* End of CHBEVD_2STAGE
454*
455 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:86
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine clascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: clascl.f:143
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine chetrd_hb2st(STAGE1, VECT, UPLO, N, KD, AB, LDAB, D, E, HOUS, LHOUS, WORK, LWORK, INFO)
CHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric tridiagonal form T
Definition: chetrd_hb2st.F:230
subroutine cstedc(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
CSTEDC
Definition: cstedc.f:212
subroutine chbevd_2stage(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
CHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:79