LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ sla_gercond()

 real function sla_gercond ( character trans, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, integer cmode, real, dimension( * ) c, integer info, real, dimension( * ) work, integer, dimension( * ) iwork )

SLA_GERCOND estimates the Skeel condition number for a general matrix.

Purpose:
```    SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
where op2 is determined by CMODE as follows
CMODE =  1    op2(C) = C
CMODE =  0    op2(C) = I
CMODE = -1    op2(C) = inv(C)
The Skeel condition number cond(A) = norminf( |inv(A)||A| )
is computed by computing scaling factors R such that
diag(R)*A*op2(C) is row equilibrated and computing the standard
infinity-norm condition number.```
Parameters
 [in] TRANS ``` TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate Transpose = Transpose)``` [in] N ``` N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.``` [in] A ``` A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).``` [in] AF ``` AF is REAL array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF.``` [in] LDAF ``` LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).``` [in] IPIV ``` IPIV is INTEGER array, dimension (N) The pivot indices from the factorization A = P*L*U as computed by SGETRF; row i of the matrix was interchanged with row IPIV(i).``` [in] CMODE ``` CMODE is INTEGER Determines op2(C) in the formula op(A) * op2(C) as follows: CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C)``` [in] C ``` C is REAL array, dimension (N) The vector C in the formula op(A) * op2(C).``` [out] INFO ``` INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid.``` [out] WORK ``` WORK is REAL array, dimension (3*N). Workspace.``` [out] IWORK ``` IWORK is INTEGER array, dimension (N). Workspace.2```

Definition at line 148 of file sla_gercond.f.

150*
151* -- LAPACK computational routine --
152* -- LAPACK is a software package provided by Univ. of Tennessee, --
153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154*
155* .. Scalar Arguments ..
156 CHARACTER TRANS
157 INTEGER N, LDA, LDAF, INFO, CMODE
158* ..
159* .. Array Arguments ..
160 INTEGER IPIV( * ), IWORK( * )
161 REAL A( LDA, * ), AF( LDAF, * ), WORK( * ),
162 \$ C( * )
163* ..
164*
165* =====================================================================
166*
167* .. Local Scalars ..
168 LOGICAL NOTRANS
169 INTEGER KASE, I, J
170 REAL AINVNM, TMP
171* ..
172* .. Local Arrays ..
173 INTEGER ISAVE( 3 )
174* ..
175* .. External Functions ..
176 LOGICAL LSAME
177 EXTERNAL lsame
178* ..
179* .. External Subroutines ..
180 EXTERNAL slacn2, sgetrs, xerbla
181* ..
182* .. Intrinsic Functions ..
183 INTRINSIC abs, max
184* ..
185* .. Executable Statements ..
186*
187 sla_gercond = 0.0
188*
189 info = 0
190 notrans = lsame( trans, 'N' )
191 IF ( .NOT. notrans .AND. .NOT. lsame(trans, 'T')
192 \$ .AND. .NOT. lsame(trans, 'C') ) THEN
193 info = -1
194 ELSE IF( n.LT.0 ) THEN
195 info = -2
196 ELSE IF( lda.LT.max( 1, n ) ) THEN
197 info = -4
198 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
199 info = -6
200 END IF
201 IF( info.NE.0 ) THEN
202 CALL xerbla( 'SLA_GERCOND', -info )
203 RETURN
204 END IF
205 IF( n.EQ.0 ) THEN
206 sla_gercond = 1.0
207 RETURN
208 END IF
209*
210* Compute the equilibration matrix R such that
211* inv(R)*A*C has unit 1-norm.
212*
213 IF (notrans) THEN
214 DO i = 1, n
215 tmp = 0.0
216 IF ( cmode .EQ. 1 ) THEN
217 DO j = 1, n
218 tmp = tmp + abs( a( i, j ) * c( j ) )
219 END DO
220 ELSE IF ( cmode .EQ. 0 ) THEN
221 DO j = 1, n
222 tmp = tmp + abs( a( i, j ) )
223 END DO
224 ELSE
225 DO j = 1, n
226 tmp = tmp + abs( a( i, j ) / c( j ) )
227 END DO
228 END IF
229 work( 2*n+i ) = tmp
230 END DO
231 ELSE
232 DO i = 1, n
233 tmp = 0.0
234 IF ( cmode .EQ. 1 ) THEN
235 DO j = 1, n
236 tmp = tmp + abs( a( j, i ) * c( j ) )
237 END DO
238 ELSE IF ( cmode .EQ. 0 ) THEN
239 DO j = 1, n
240 tmp = tmp + abs( a( j, i ) )
241 END DO
242 ELSE
243 DO j = 1, n
244 tmp = tmp + abs( a( j, i ) / c( j ) )
245 END DO
246 END IF
247 work( 2*n+i ) = tmp
248 END DO
249 END IF
250*
251* Estimate the norm of inv(op(A)).
252*
253 ainvnm = 0.0
254
255 kase = 0
256 10 CONTINUE
257 CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
258 IF( kase.NE.0 ) THEN
259 IF( kase.EQ.2 ) THEN
260*
261* Multiply by R.
262*
263 DO i = 1, n
264 work(i) = work(i) * work(2*n+i)
265 END DO
266
267 IF (notrans) THEN
268 CALL sgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
269 \$ work, n, info )
270 ELSE
271 CALL sgetrs( 'Transpose', n, 1, af, ldaf, ipiv,
272 \$ work, n, info )
273 END IF
274*
275* Multiply by inv(C).
276*
277 IF ( cmode .EQ. 1 ) THEN
278 DO i = 1, n
279 work( i ) = work( i ) / c( i )
280 END DO
281 ELSE IF ( cmode .EQ. -1 ) THEN
282 DO i = 1, n
283 work( i ) = work( i ) * c( i )
284 END DO
285 END IF
286 ELSE
287*
288* Multiply by inv(C**T).
289*
290 IF ( cmode .EQ. 1 ) THEN
291 DO i = 1, n
292 work( i ) = work( i ) / c( i )
293 END DO
294 ELSE IF ( cmode .EQ. -1 ) THEN
295 DO i = 1, n
296 work( i ) = work( i ) * c( i )
297 END DO
298 END IF
299
300 IF (notrans) THEN
301 CALL sgetrs( 'Transpose', n, 1, af, ldaf, ipiv,
302 \$ work, n, info )
303 ELSE
304 CALL sgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
305 \$ work, n, info )
306 END IF
307*
308* Multiply by R.
309*
310 DO i = 1, n
311 work( i ) = work( i ) * work( 2*n+i )
312 END DO
313 END IF
314 GO TO 10
315 END IF
316*
317* Compute the estimate of the reciprocal condition number.
318*
319 IF( ainvnm .NE. 0.0 )
320 \$ sla_gercond = ( 1.0 / ainvnm )
321*
322 RETURN
323*
324* End of SLA_GERCOND
325*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
SGETRS
Definition sgetrs.f:121
real function sla_gercond(trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)
SLA_GERCOND estimates the Skeel condition number for a general matrix.
subroutine slacn2(n, v, x, isgn, est, kase, isave)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition slacn2.f:136
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: