LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
ddrvvx.f
Go to the documentation of this file.
1*> \brief \b DDRVVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE DDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
12* NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
13* VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
14* RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
15* RESULT, WORK, NWORK, IWORK, INFO )
16*
17* .. Scalar Arguments ..
18* INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
19* $ NSIZES, NTYPES, NWORK
20* DOUBLE PRECISION THRESH
21* ..
22* .. Array Arguments ..
23* LOGICAL DOTYPE( * )
24* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
25* DOUBLE PRECISION A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
26* $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
27* $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
28* $ RESULT( 11 ), SCALE( * ), SCALE1( * ),
29* $ VL( LDVL, * ), VR( LDVR, * ), WI( * ),
30* $ WI1( * ), WORK( * ), WR( * ), WR1( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> DDRVVX checks the nonsymmetric eigenvalue problem expert driver
40*> DGEEVX.
41*>
42*> DDRVVX uses both test matrices generated randomly depending on
43*> data supplied in the calling sequence, as well as on data
44*> read from an input file and including precomputed condition
45*> numbers to which it compares the ones it computes.
46*>
47*> When DDRVVX is called, a number of matrix "sizes" ("n's") and a
48*> number of matrix "types" are specified in the calling sequence.
49*> For each size ("n") and each type of matrix, one matrix will be
50*> generated and used to test the nonsymmetric eigenroutines. For
51*> each matrix, 9 tests will be performed:
52*>
53*> (1) | A * VR - VR * W | / ( n |A| ulp )
54*>
55*> Here VR is the matrix of unit right eigenvectors.
56*> W is a block diagonal matrix, with a 1x1 block for each
57*> real eigenvalue and a 2x2 block for each complex conjugate
58*> pair. If eigenvalues j and j+1 are a complex conjugate pair,
59*> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
60*> 2 x 2 block corresponding to the pair will be:
61*>
62*> ( wr wi )
63*> ( -wi wr )
64*>
65*> Such a block multiplying an n x 2 matrix ( ur ui ) on the
66*> right will be the same as multiplying ur + i*ui by wr + i*wi.
67*>
68*> (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
69*>
70*> Here VL is the matrix of unit left eigenvectors, A**H is the
71*> conjugate transpose of A, and W is as above.
72*>
73*> (3) | |VR(i)| - 1 | / ulp and largest component real
74*>
75*> VR(i) denotes the i-th column of VR.
76*>
77*> (4) | |VL(i)| - 1 | / ulp and largest component real
78*>
79*> VL(i) denotes the i-th column of VL.
80*>
81*> (5) W(full) = W(partial)
82*>
83*> W(full) denotes the eigenvalues computed when VR, VL, RCONDV
84*> and RCONDE are also computed, and W(partial) denotes the
85*> eigenvalues computed when only some of VR, VL, RCONDV, and
86*> RCONDE are computed.
87*>
88*> (6) VR(full) = VR(partial)
89*>
90*> VR(full) denotes the right eigenvectors computed when VL, RCONDV
91*> and RCONDE are computed, and VR(partial) denotes the result
92*> when only some of VL and RCONDV are computed.
93*>
94*> (7) VL(full) = VL(partial)
95*>
96*> VL(full) denotes the left eigenvectors computed when VR, RCONDV
97*> and RCONDE are computed, and VL(partial) denotes the result
98*> when only some of VR and RCONDV are computed.
99*>
100*> (8) 0 if SCALE, ILO, IHI, ABNRM (full) =
101*> SCALE, ILO, IHI, ABNRM (partial)
102*> 1/ulp otherwise
103*>
104*> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
105*> (full) is when VR, VL, RCONDE and RCONDV are also computed, and
106*> (partial) is when some are not computed.
107*>
108*> (9) RCONDV(full) = RCONDV(partial)
109*>
110*> RCONDV(full) denotes the reciprocal condition numbers of the
111*> right eigenvectors computed when VR, VL and RCONDE are also
112*> computed. RCONDV(partial) denotes the reciprocal condition
113*> numbers when only some of VR, VL and RCONDE are computed.
114*>
115*> The "sizes" are specified by an array NN(1:NSIZES); the value of
116*> each element NN(j) specifies one size.
117*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
118*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
119*> Currently, the list of possible types is:
120*>
121*> (1) The zero matrix.
122*> (2) The identity matrix.
123*> (3) A (transposed) Jordan block, with 1's on the diagonal.
124*>
125*> (4) A diagonal matrix with evenly spaced entries
126*> 1, ..., ULP and random signs.
127*> (ULP = (first number larger than 1) - 1 )
128*> (5) A diagonal matrix with geometrically spaced entries
129*> 1, ..., ULP and random signs.
130*> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
131*> and random signs.
132*>
133*> (7) Same as (4), but multiplied by a constant near
134*> the overflow threshold
135*> (8) Same as (4), but multiplied by a constant near
136*> the underflow threshold
137*>
138*> (9) A matrix of the form U' T U, where U is orthogonal and
139*> T has evenly spaced entries 1, ..., ULP with random signs
140*> on the diagonal and random O(1) entries in the upper
141*> triangle.
142*>
143*> (10) A matrix of the form U' T U, where U is orthogonal and
144*> T has geometrically spaced entries 1, ..., ULP with random
145*> signs on the diagonal and random O(1) entries in the upper
146*> triangle.
147*>
148*> (11) A matrix of the form U' T U, where U is orthogonal and
149*> T has "clustered" entries 1, ULP,..., ULP with random
150*> signs on the diagonal and random O(1) entries in the upper
151*> triangle.
152*>
153*> (12) A matrix of the form U' T U, where U is orthogonal and
154*> T has real or complex conjugate paired eigenvalues randomly
155*> chosen from ( ULP, 1 ) and random O(1) entries in the upper
156*> triangle.
157*>
158*> (13) A matrix of the form X' T X, where X has condition
159*> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
160*> with random signs on the diagonal and random O(1) entries
161*> in the upper triangle.
162*>
163*> (14) A matrix of the form X' T X, where X has condition
164*> SQRT( ULP ) and T has geometrically spaced entries
165*> 1, ..., ULP with random signs on the diagonal and random
166*> O(1) entries in the upper triangle.
167*>
168*> (15) A matrix of the form X' T X, where X has condition
169*> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
170*> with random signs on the diagonal and random O(1) entries
171*> in the upper triangle.
172*>
173*> (16) A matrix of the form X' T X, where X has condition
174*> SQRT( ULP ) and T has real or complex conjugate paired
175*> eigenvalues randomly chosen from ( ULP, 1 ) and random
176*> O(1) entries in the upper triangle.
177*>
178*> (17) Same as (16), but multiplied by a constant
179*> near the overflow threshold
180*> (18) Same as (16), but multiplied by a constant
181*> near the underflow threshold
182*>
183*> (19) Nonsymmetric matrix with random entries chosen from (-1,1).
184*> If N is at least 4, all entries in first two rows and last
185*> row, and first column and last two columns are zero.
186*> (20) Same as (19), but multiplied by a constant
187*> near the overflow threshold
188*> (21) Same as (19), but multiplied by a constant
189*> near the underflow threshold
190*>
191*> In addition, an input file will be read from logical unit number
192*> NIUNIT. The file contains matrices along with precomputed
193*> eigenvalues and reciprocal condition numbers for the eigenvalues
194*> and right eigenvectors. For these matrices, in addition to tests
195*> (1) to (9) we will compute the following two tests:
196*>
197*> (10) |RCONDV - RCDVIN| / cond(RCONDV)
198*>
199*> RCONDV is the reciprocal right eigenvector condition number
200*> computed by DGEEVX and RCDVIN (the precomputed true value)
201*> is supplied as input. cond(RCONDV) is the condition number of
202*> RCONDV, and takes errors in computing RCONDV into account, so
203*> that the resulting quantity should be O(ULP). cond(RCONDV) is
204*> essentially given by norm(A)/RCONDE.
205*>
206*> (11) |RCONDE - RCDEIN| / cond(RCONDE)
207*>
208*> RCONDE is the reciprocal eigenvalue condition number
209*> computed by DGEEVX and RCDEIN (the precomputed true value)
210*> is supplied as input. cond(RCONDE) is the condition number
211*> of RCONDE, and takes errors in computing RCONDE into account,
212*> so that the resulting quantity should be O(ULP). cond(RCONDE)
213*> is essentially given by norm(A)/RCONDV.
214*> \endverbatim
215*
216* Arguments:
217* ==========
218*
219*> \param[in] NSIZES
220*> \verbatim
221*> NSIZES is INTEGER
222*> The number of sizes of matrices to use. NSIZES must be at
223*> least zero. If it is zero, no randomly generated matrices
224*> are tested, but any test matrices read from NIUNIT will be
225*> tested.
226*> \endverbatim
227*>
228*> \param[in] NN
229*> \verbatim
230*> NN is INTEGER array, dimension (NSIZES)
231*> An array containing the sizes to be used for the matrices.
232*> Zero values will be skipped. The values must be at least
233*> zero.
234*> \endverbatim
235*>
236*> \param[in] NTYPES
237*> \verbatim
238*> NTYPES is INTEGER
239*> The number of elements in DOTYPE. NTYPES must be at least
240*> zero. If it is zero, no randomly generated test matrices
241*> are tested, but and test matrices read from NIUNIT will be
242*> tested. If it is MAXTYP+1 and NSIZES is 1, then an
243*> additional type, MAXTYP+1 is defined, which is to use
244*> whatever matrix is in A. This is only useful if
245*> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
246*> \endverbatim
247*>
248*> \param[in] DOTYPE
249*> \verbatim
250*> DOTYPE is LOGICAL array, dimension (NTYPES)
251*> If DOTYPE(j) is .TRUE., then for each size in NN a
252*> matrix of that size and of type j will be generated.
253*> If NTYPES is smaller than the maximum number of types
254*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
255*> MAXTYP will not be generated. If NTYPES is larger
256*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
257*> will be ignored.
258*> \endverbatim
259*>
260*> \param[in,out] ISEED
261*> \verbatim
262*> ISEED is INTEGER array, dimension (4)
263*> On entry ISEED specifies the seed of the random number
264*> generator. The array elements should be between 0 and 4095;
265*> if not they will be reduced mod 4096. Also, ISEED(4) must
266*> be odd. The random number generator uses a linear
267*> congruential sequence limited to small integers, and so
268*> should produce machine independent random numbers. The
269*> values of ISEED are changed on exit, and can be used in the
270*> next call to DDRVVX to continue the same random number
271*> sequence.
272*> \endverbatim
273*>
274*> \param[in] THRESH
275*> \verbatim
276*> THRESH is DOUBLE PRECISION
277*> A test will count as "failed" if the "error", computed as
278*> described above, exceeds THRESH. Note that the error
279*> is scaled to be O(1), so THRESH should be a reasonably
280*> small multiple of 1, e.g., 10 or 100. In particular,
281*> it should not depend on the precision (single vs. double)
282*> or the size of the matrix. It must be at least zero.
283*> \endverbatim
284*>
285*> \param[in] NIUNIT
286*> \verbatim
287*> NIUNIT is INTEGER
288*> The FORTRAN unit number for reading in the data file of
289*> problems to solve.
290*> \endverbatim
291*>
292*> \param[in] NOUNIT
293*> \verbatim
294*> NOUNIT is INTEGER
295*> The FORTRAN unit number for printing out error messages
296*> (e.g., if a routine returns INFO not equal to 0.)
297*> \endverbatim
298*>
299*> \param[out] A
300*> \verbatim
301*> A is DOUBLE PRECISION array, dimension
302*> (LDA, max(NN,12))
303*> Used to hold the matrix whose eigenvalues are to be
304*> computed. On exit, A contains the last matrix actually used.
305*> \endverbatim
306*>
307*> \param[in] LDA
308*> \verbatim
309*> LDA is INTEGER
310*> The leading dimension of the arrays A and H.
311*> LDA >= max(NN,12), since 12 is the dimension of the largest
312*> matrix in the precomputed input file.
313*> \endverbatim
314*>
315*> \param[out] H
316*> \verbatim
317*> H is DOUBLE PRECISION array, dimension
318*> (LDA, max(NN,12))
319*> Another copy of the test matrix A, modified by DGEEVX.
320*> \endverbatim
321*>
322*> \param[out] WR
323*> \verbatim
324*> WR is DOUBLE PRECISION array, dimension (max(NN))
325*> \endverbatim
326*>
327*> \param[out] WI
328*> \verbatim
329*> WI is DOUBLE PRECISION array, dimension (max(NN))
330*>
331*> The real and imaginary parts of the eigenvalues of A.
332*> On exit, WR + WI*i are the eigenvalues of the matrix in A.
333*> \endverbatim
334*>
335*> \param[out] WR1
336*> \verbatim
337*> WR1 is DOUBLE PRECISION array, dimension (max(NN,12))
338*> \endverbatim
339*>
340*> \param[out] WI1
341*> \verbatim
342*> WI1 is DOUBLE PRECISION array, dimension (max(NN,12))
343*>
344*> Like WR, WI, these arrays contain the eigenvalues of A,
345*> but those computed when DGEEVX only computes a partial
346*> eigendecomposition, i.e. not the eigenvalues and left
347*> and right eigenvectors.
348*> \endverbatim
349*>
350*> \param[out] VL
351*> \verbatim
352*> VL is DOUBLE PRECISION array, dimension
353*> (LDVL, max(NN,12))
354*> VL holds the computed left eigenvectors.
355*> \endverbatim
356*>
357*> \param[in] LDVL
358*> \verbatim
359*> LDVL is INTEGER
360*> Leading dimension of VL. Must be at least max(1,max(NN,12)).
361*> \endverbatim
362*>
363*> \param[out] VR
364*> \verbatim
365*> VR is DOUBLE PRECISION array, dimension
366*> (LDVR, max(NN,12))
367*> VR holds the computed right eigenvectors.
368*> \endverbatim
369*>
370*> \param[in] LDVR
371*> \verbatim
372*> LDVR is INTEGER
373*> Leading dimension of VR. Must be at least max(1,max(NN,12)).
374*> \endverbatim
375*>
376*> \param[out] LRE
377*> \verbatim
378*> LRE is DOUBLE PRECISION array, dimension
379*> (LDLRE, max(NN,12))
380*> LRE holds the computed right or left eigenvectors.
381*> \endverbatim
382*>
383*> \param[in] LDLRE
384*> \verbatim
385*> LDLRE is INTEGER
386*> Leading dimension of LRE. Must be at least max(1,max(NN,12))
387*> \endverbatim
388*>
389*> \param[out] RCONDV
390*> \verbatim
391*> RCONDV is DOUBLE PRECISION array, dimension (N)
392*> RCONDV holds the computed reciprocal condition numbers
393*> for eigenvectors.
394*> \endverbatim
395*>
396*> \param[out] RCNDV1
397*> \verbatim
398*> RCNDV1 is DOUBLE PRECISION array, dimension (N)
399*> RCNDV1 holds more computed reciprocal condition numbers
400*> for eigenvectors.
401*> \endverbatim
402*>
403*> \param[out] RCDVIN
404*> \verbatim
405*> RCDVIN is DOUBLE PRECISION array, dimension (N)
406*> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
407*> condition numbers for eigenvectors to be compared with
408*> RCONDV.
409*> \endverbatim
410*>
411*> \param[out] RCONDE
412*> \verbatim
413*> RCONDE is DOUBLE PRECISION array, dimension (N)
414*> RCONDE holds the computed reciprocal condition numbers
415*> for eigenvalues.
416*> \endverbatim
417*>
418*> \param[out] RCNDE1
419*> \verbatim
420*> RCNDE1 is DOUBLE PRECISION array, dimension (N)
421*> RCNDE1 holds more computed reciprocal condition numbers
422*> for eigenvalues.
423*> \endverbatim
424*>
425*> \param[out] RCDEIN
426*> \verbatim
427*> RCDEIN is DOUBLE PRECISION array, dimension (N)
428*> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
429*> condition numbers for eigenvalues to be compared with
430*> RCONDE.
431*> \endverbatim
432*>
433*> \param[out] SCALE
434*> \verbatim
435*> SCALE is DOUBLE PRECISION array, dimension (N)
436*> Holds information describing balancing of matrix.
437*> \endverbatim
438*>
439*> \param[out] SCALE1
440*> \verbatim
441*> SCALE1 is DOUBLE PRECISION array, dimension (N)
442*> Holds information describing balancing of matrix.
443*> \endverbatim
444*>
445*> \param[out] RESULT
446*> \verbatim
447*> RESULT is DOUBLE PRECISION array, dimension (11)
448*> The values computed by the seven tests described above.
449*> The values are currently limited to 1/ulp, to avoid overflow.
450*> \endverbatim
451*>
452*> \param[out] WORK
453*> \verbatim
454*> WORK is DOUBLE PRECISION array, dimension (NWORK)
455*> \endverbatim
456*>
457*> \param[in] NWORK
458*> \verbatim
459*> NWORK is INTEGER
460*> The number of entries in WORK. This must be at least
461*> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =
462*> max( 360 ,6*NN(j)+2*NN(j)**2) for all j.
463*> \endverbatim
464*>
465*> \param[out] IWORK
466*> \verbatim
467*> IWORK is INTEGER array, dimension (2*max(NN,12))
468*> \endverbatim
469*>
470*> \param[out] INFO
471*> \verbatim
472*> INFO is INTEGER
473*> If 0, then successful exit.
474*> If <0, then input parameter -INFO is incorrect.
475*> If >0, DLATMR, SLATMS, SLATME or DGET23 returned an error
476*> code, and INFO is its absolute value.
477*>
478*>-----------------------------------------------------------------------
479*>
480*> Some Local Variables and Parameters:
481*> ---- ----- --------- --- ----------
482*>
483*> ZERO, ONE Real 0 and 1.
484*> MAXTYP The number of types defined.
485*> NMAX Largest value in NN or 12.
486*> NERRS The number of tests which have exceeded THRESH
487*> COND, CONDS,
488*> IMODE Values to be passed to the matrix generators.
489*> ANORM Norm of A; passed to matrix generators.
490*>
491*> OVFL, UNFL Overflow and underflow thresholds.
492*> ULP, ULPINV Finest relative precision and its inverse.
493*> RTULP, RTULPI Square roots of the previous 4 values.
494*>
495*> The following four arrays decode JTYPE:
496*> KTYPE(j) The general type (1-10) for type "j".
497*> KMODE(j) The MODE value to be passed to the matrix
498*> generator for type "j".
499*> KMAGN(j) The order of magnitude ( O(1),
500*> O(overflow^(1/2) ), O(underflow^(1/2) )
501*> KCONDS(j) Selectw whether CONDS is to be 1 or
502*> 1/sqrt(ulp). (0 means irrelevant.)
503*> \endverbatim
504*
505* Authors:
506* ========
507*
508*> \author Univ. of Tennessee
509*> \author Univ. of California Berkeley
510*> \author Univ. of Colorado Denver
511*> \author NAG Ltd.
512*
513*> \ingroup double_eig
514*
515* =====================================================================
516 SUBROUTINE ddrvvx( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
517 $ NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
518 $ VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
519 $ RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
520 $ RESULT, WORK, NWORK, IWORK, INFO )
521*
522* -- LAPACK test routine --
523* -- LAPACK is a software package provided by Univ. of Tennessee, --
524* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
525*
526* .. Scalar Arguments ..
527 INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
528 $ NSIZES, NTYPES, NWORK
529 DOUBLE PRECISION THRESH
530* ..
531* .. Array Arguments ..
532 LOGICAL DOTYPE( * )
533 INTEGER ISEED( 4 ), IWORK( * ), NN( * )
534 DOUBLE PRECISION A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
535 $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
536 $ rcndv1( * ), rconde( * ), rcondv( * ),
537 $ result( 11 ), scale( * ), scale1( * ),
538 $ vl( ldvl, * ), vr( ldvr, * ), wi( * ),
539 $ wi1( * ), work( * ), wr( * ), wr1( * )
540* ..
541*
542* =====================================================================
543*
544* .. Parameters ..
545 DOUBLE PRECISION ZERO, ONE
546 PARAMETER ( ZERO = 0.0d0, one = 1.0d0 )
547 INTEGER MAXTYP
548 PARAMETER ( MAXTYP = 21 )
549* ..
550* .. Local Scalars ..
551 LOGICAL BADNN
552 CHARACTER BALANC
553 CHARACTER*3 PATH
554 INTEGER I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL,
555 $ jsize, jtype, mtypes, n, nerrs, nfail, nmax,
556 $ nnwork, ntest, ntestf, ntestt
557 DOUBLE PRECISION ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
558 $ ulpinv, unfl
559* ..
560* .. Local Arrays ..
561 CHARACTER ADUMMA( 1 ), BAL( 4 )
562 INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
563 $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
564 $ KTYPE( MAXTYP )
565* ..
566* .. External Functions ..
567 DOUBLE PRECISION DLAMCH
568 EXTERNAL DLAMCH
569* ..
570* .. External Subroutines ..
571 EXTERNAL dget23, dlaset, dlasum, dlatme, dlatmr, dlatms,
572 $ xerbla
573* ..
574* .. Intrinsic Functions ..
575 INTRINSIC abs, max, min, sqrt
576* ..
577* .. Data statements ..
578 DATA ktype / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
579 DATA kmagn / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
580 $ 3, 1, 2, 3 /
581 DATA kmode / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
582 $ 1, 5, 5, 5, 4, 3, 1 /
583 DATA kconds / 3*0, 5*0, 4*1, 6*2, 3*0 /
584 DATA bal / 'N', 'P', 'S', 'B' /
585* ..
586* .. Executable Statements ..
587*
588 path( 1: 1 ) = 'Double precision'
589 path( 2: 3 ) = 'VX'
590*
591* Check for errors
592*
593 ntestt = 0
594 ntestf = 0
595 info = 0
596*
597* Important constants
598*
599 badnn = .false.
600*
601* 12 is the largest dimension in the input file of precomputed
602* problems
603*
604 nmax = 12
605 DO 10 j = 1, nsizes
606 nmax = max( nmax, nn( j ) )
607 IF( nn( j ).LT.0 )
608 $ badnn = .true.
609 10 CONTINUE
610*
611* Check for errors
612*
613 IF( nsizes.LT.0 ) THEN
614 info = -1
615 ELSE IF( badnn ) THEN
616 info = -2
617 ELSE IF( ntypes.LT.0 ) THEN
618 info = -3
619 ELSE IF( thresh.LT.zero ) THEN
620 info = -6
621 ELSE IF( lda.LT.1 .OR. lda.LT.nmax ) THEN
622 info = -10
623 ELSE IF( ldvl.LT.1 .OR. ldvl.LT.nmax ) THEN
624 info = -17
625 ELSE IF( ldvr.LT.1 .OR. ldvr.LT.nmax ) THEN
626 info = -19
627 ELSE IF( ldlre.LT.1 .OR. ldlre.LT.nmax ) THEN
628 info = -21
629 ELSE IF( 6*nmax+2*nmax**2.GT.nwork ) THEN
630 info = -32
631 END IF
632*
633 IF( info.NE.0 ) THEN
634 CALL xerbla( 'DDRVVX', -info )
635 RETURN
636 END IF
637*
638* If nothing to do check on NIUNIT
639*
640 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
641 $ GO TO 160
642*
643* More Important constants
644*
645 unfl = dlamch( 'Safe minimum' )
646 ovfl = one / unfl
647 ulp = dlamch( 'Precision' )
648 ulpinv = one / ulp
649 rtulp = sqrt( ulp )
650 rtulpi = one / rtulp
651*
652* Loop over sizes, types
653*
654 nerrs = 0
655*
656 DO 150 jsize = 1, nsizes
657 n = nn( jsize )
658 IF( nsizes.NE.1 ) THEN
659 mtypes = min( maxtyp, ntypes )
660 ELSE
661 mtypes = min( maxtyp+1, ntypes )
662 END IF
663*
664 DO 140 jtype = 1, mtypes
665 IF( .NOT.dotype( jtype ) )
666 $ GO TO 140
667*
668* Save ISEED in case of an error.
669*
670 DO 20 j = 1, 4
671 ioldsd( j ) = iseed( j )
672 20 CONTINUE
673*
674* Compute "A"
675*
676* Control parameters:
677*
678* KMAGN KCONDS KMODE KTYPE
679* =1 O(1) 1 clustered 1 zero
680* =2 large large clustered 2 identity
681* =3 small exponential Jordan
682* =4 arithmetic diagonal, (w/ eigenvalues)
683* =5 random log symmetric, w/ eigenvalues
684* =6 random general, w/ eigenvalues
685* =7 random diagonal
686* =8 random symmetric
687* =9 random general
688* =10 random triangular
689*
690 IF( mtypes.GT.maxtyp )
691 $ GO TO 90
692*
693 itype = ktype( jtype )
694 imode = kmode( jtype )
695*
696* Compute norm
697*
698 GO TO ( 30, 40, 50 )kmagn( jtype )
699*
700 30 CONTINUE
701 anorm = one
702 GO TO 60
703*
704 40 CONTINUE
705 anorm = ovfl*ulp
706 GO TO 60
707*
708 50 CONTINUE
709 anorm = unfl*ulpinv
710 GO TO 60
711*
712 60 CONTINUE
713*
714 CALL dlaset( 'Full', lda, n, zero, zero, a, lda )
715 iinfo = 0
716 cond = ulpinv
717*
718* Special Matrices -- Identity & Jordan block
719*
720* Zero
721*
722 IF( itype.EQ.1 ) THEN
723 iinfo = 0
724*
725 ELSE IF( itype.EQ.2 ) THEN
726*
727* Identity
728*
729 DO 70 jcol = 1, n
730 a( jcol, jcol ) = anorm
731 70 CONTINUE
732*
733 ELSE IF( itype.EQ.3 ) THEN
734*
735* Jordan Block
736*
737 DO 80 jcol = 1, n
738 a( jcol, jcol ) = anorm
739 IF( jcol.GT.1 )
740 $ a( jcol, jcol-1 ) = one
741 80 CONTINUE
742*
743 ELSE IF( itype.EQ.4 ) THEN
744*
745* Diagonal Matrix, [Eigen]values Specified
746*
747 CALL dlatms( n, n, 'S', iseed, 'S', work, imode, cond,
748 $ anorm, 0, 0, 'N', a, lda, work( n+1 ),
749 $ iinfo )
750*
751 ELSE IF( itype.EQ.5 ) THEN
752*
753* Symmetric, eigenvalues specified
754*
755 CALL dlatms( n, n, 'S', iseed, 'S', work, imode, cond,
756 $ anorm, n, n, 'N', a, lda, work( n+1 ),
757 $ iinfo )
758*
759 ELSE IF( itype.EQ.6 ) THEN
760*
761* General, eigenvalues specified
762*
763 IF( kconds( jtype ).EQ.1 ) THEN
764 conds = one
765 ELSE IF( kconds( jtype ).EQ.2 ) THEN
766 conds = rtulpi
767 ELSE
768 conds = zero
769 END IF
770*
771 adumma( 1 ) = ' '
772 CALL dlatme( n, 'S', iseed, work, imode, cond, one,
773 $ adumma, 'T', 'T', 'T', work( n+1 ), 4,
774 $ conds, n, n, anorm, a, lda, work( 2*n+1 ),
775 $ iinfo )
776*
777 ELSE IF( itype.EQ.7 ) THEN
778*
779* Diagonal, random eigenvalues
780*
781 CALL dlatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
782 $ 'T', 'N', work( n+1 ), 1, one,
783 $ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
784 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
785*
786 ELSE IF( itype.EQ.8 ) THEN
787*
788* Symmetric, random eigenvalues
789*
790 CALL dlatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
791 $ 'T', 'N', work( n+1 ), 1, one,
792 $ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
793 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
794*
795 ELSE IF( itype.EQ.9 ) THEN
796*
797* General, random eigenvalues
798*
799 CALL dlatmr( n, n, 'S', iseed, 'N', work, 6, one, one,
800 $ 'T', 'N', work( n+1 ), 1, one,
801 $ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
802 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
803 IF( n.GE.4 ) THEN
804 CALL dlaset( 'Full', 2, n, zero, zero, a, lda )
805 CALL dlaset( 'Full', n-3, 1, zero, zero, a( 3, 1 ),
806 $ lda )
807 CALL dlaset( 'Full', n-3, 2, zero, zero, a( 3, n-1 ),
808 $ lda )
809 CALL dlaset( 'Full', 1, n, zero, zero, a( n, 1 ),
810 $ lda )
811 END IF
812*
813 ELSE IF( itype.EQ.10 ) THEN
814*
815* Triangular, random eigenvalues
816*
817 CALL dlatmr( n, n, 'S', iseed, 'N', work, 6, one, one,
818 $ 'T', 'N', work( n+1 ), 1, one,
819 $ work( 2*n+1 ), 1, one, 'N', idumma, n, 0,
820 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
821*
822 ELSE
823*
824 iinfo = 1
825 END IF
826*
827 IF( iinfo.NE.0 ) THEN
828 WRITE( nounit, fmt = 9992 )'Generator', iinfo, n, jtype,
829 $ ioldsd
830 info = abs( iinfo )
831 RETURN
832 END IF
833*
834 90 CONTINUE
835*
836* Test for minimal and generous workspace
837*
838 DO 130 iwk = 1, 3
839 IF( iwk.EQ.1 ) THEN
840 nnwork = 3*n
841 ELSE IF( iwk.EQ.2 ) THEN
842 nnwork = 6*n + n**2
843 ELSE
844 nnwork = 6*n + 2*n**2
845 END IF
846 nnwork = max( nnwork, 1 )
847*
848* Test for all balancing options
849*
850 DO 120 ibal = 1, 4
851 balanc = bal( ibal )
852*
853* Perform tests
854*
855 CALL dget23( .false., balanc, jtype, thresh, ioldsd,
856 $ nounit, n, a, lda, h, wr, wi, wr1, wi1,
857 $ vl, ldvl, vr, ldvr, lre, ldlre, rcondv,
858 $ rcndv1, rcdvin, rconde, rcnde1, rcdein,
859 $ scale, scale1, result, work, nnwork,
860 $ iwork, info )
861*
862* Check for RESULT(j) > THRESH
863*
864 ntest = 0
865 nfail = 0
866 DO 100 j = 1, 9
867 IF( result( j ).GE.zero )
868 $ ntest = ntest + 1
869 IF( result( j ).GE.thresh )
870 $ nfail = nfail + 1
871 100 CONTINUE
872*
873 IF( nfail.GT.0 )
874 $ ntestf = ntestf + 1
875 IF( ntestf.EQ.1 ) THEN
876 WRITE( nounit, fmt = 9999 )path
877 WRITE( nounit, fmt = 9998 )
878 WRITE( nounit, fmt = 9997 )
879 WRITE( nounit, fmt = 9996 )
880 WRITE( nounit, fmt = 9995 )thresh
881 ntestf = 2
882 END IF
883*
884 DO 110 j = 1, 9
885 IF( result( j ).GE.thresh ) THEN
886 WRITE( nounit, fmt = 9994 )balanc, n, iwk,
887 $ ioldsd, jtype, j, result( j )
888 END IF
889 110 CONTINUE
890*
891 nerrs = nerrs + nfail
892 ntestt = ntestt + ntest
893*
894 120 CONTINUE
895 130 CONTINUE
896 140 CONTINUE
897 150 CONTINUE
898*
899 160 CONTINUE
900*
901* Read in data from file to check accuracy of condition estimation.
902* Assume input eigenvalues are sorted lexicographically (increasing
903* by real part, then decreasing by imaginary part)
904*
905 jtype = 0
906 170 CONTINUE
907 READ( niunit, fmt = *, END = 220 )n
908*
909* Read input data until N=0
910*
911 IF( n.EQ.0 )
912 $ GO TO 220
913 jtype = jtype + 1
914 iseed( 1 ) = jtype
915 DO 180 i = 1, n
916 READ( niunit, fmt = * )( a( i, j ), j = 1, n )
917 180 CONTINUE
918 DO 190 i = 1, n
919 READ( niunit, fmt = * )wr1( i ), wi1( i ), rcdein( i ),
920 $ rcdvin( i )
921 190 CONTINUE
922 CALL dget23( .true., 'N', 22, thresh, iseed, nounit, n, a, lda, h,
923 $ wr, wi, wr1, wi1, vl, ldvl, vr, ldvr, lre, ldlre,
924 $ rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein,
925 $ scale, scale1, result, work, 6*n+2*n**2, iwork,
926 $ info )
927*
928* Check for RESULT(j) > THRESH
929*
930 ntest = 0
931 nfail = 0
932 DO 200 j = 1, 11
933 IF( result( j ).GE.zero )
934 $ ntest = ntest + 1
935 IF( result( j ).GE.thresh )
936 $ nfail = nfail + 1
937 200 CONTINUE
938*
939 IF( nfail.GT.0 )
940 $ ntestf = ntestf + 1
941 IF( ntestf.EQ.1 ) THEN
942 WRITE( nounit, fmt = 9999 )path
943 WRITE( nounit, fmt = 9998 )
944 WRITE( nounit, fmt = 9997 )
945 WRITE( nounit, fmt = 9996 )
946 WRITE( nounit, fmt = 9995 )thresh
947 ntestf = 2
948 END IF
949*
950 DO 210 j = 1, 11
951 IF( result( j ).GE.thresh ) THEN
952 WRITE( nounit, fmt = 9993 )n, jtype, j, result( j )
953 END IF
954 210 CONTINUE
955*
956 nerrs = nerrs + nfail
957 ntestt = ntestt + ntest
958 GO TO 170
959 220 CONTINUE
960*
961* Summary
962*
963 CALL dlasum( path, nounit, nerrs, ntestt )
964*
965 9999 FORMAT( / 1x, a3, ' -- Real Eigenvalue-Eigenvector Decomposition',
966 $ ' Expert Driver', /
967 $ ' Matrix types (see DDRVVX for details): ' )
968*
969 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
970 $ ' ', ' 5=Diagonal: geometr. spaced entries.',
971 $ / ' 2=Identity matrix. ', ' 6=Diagona',
972 $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
973 $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
974 $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
975 $ 'mall, evenly spaced.' )
976 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
977 $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
978 $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
979 $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
980 $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
981 $ 'lex ', / ' 12=Well-cond., random complex ', ' ',
982 $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
983 $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
984 $ ' complx ' )
985 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
986 $ 'with small random entries.', / ' 20=Matrix with large ran',
987 $ 'dom entries. ', ' 22=Matrix read from input file', / )
988 9995 FORMAT( ' Tests performed with test threshold =', f8.2,
989 $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
990 $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
991 $ / ' 3 = | |VR(i)| - 1 | / ulp ',
992 $ / ' 4 = | |VL(i)| - 1 | / ulp ',
993 $ / ' 5 = 0 if W same no matter if VR or VL computed,',
994 $ ' 1/ulp otherwise', /
995 $ ' 6 = 0 if VR same no matter what else computed,',
996 $ ' 1/ulp otherwise', /
997 $ ' 7 = 0 if VL same no matter what else computed,',
998 $ ' 1/ulp otherwise', /
999 $ ' 8 = 0 if RCONDV same no matter what else computed,',
1000 $ ' 1/ulp otherwise', /
1001 $ ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
1002 $ ' computed, 1/ulp otherwise',
1003 $ / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
1004 $ / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
1005 9994 FORMAT( ' BALANC=''', a1, ''',N=', i4, ',IWK=', i1, ', seed=',
1006 $ 4( i4, ',' ), ' type ', i2, ', test(', i2, ')=', g10.3 )
1007 9993 FORMAT( ' N=', i5, ', input example =', i3, ', test(', i2, ')=',
1008 $ g10.3 )
1009 9992 FORMAT( ' DDRVVX: ', a, ' returned INFO=', i6, '.', / 9x, 'N=',
1010 $ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
1011*
1012 RETURN
1013*
1014* End of DDRVVX
1015*
1016 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ddrvvx(nsizes, nn, ntypes, dotype, iseed, thresh, niunit, nounit, a, lda, h, wr, wi, wr1, wi1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, nwork, iwork, info)
DDRVVX
Definition ddrvvx.f:521
subroutine dget23(comp, balanc, jtype, thresh, iseed, nounit, n, a, lda, h, wr, wi, wr1, wi1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, lwork, iwork, info)
DGET23
Definition dget23.f:378
subroutine dlasum(type, iounit, ie, nrun)
DLASUM
Definition dlasum.f:43
subroutine dlatme(n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes, conds, kl, ku, anorm, a, lda, work, info)
DLATME
Definition dlatme.f:332
subroutine dlatmr(m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model, condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork, info)
DLATMR
Definition dlatmr.f:471
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110