LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssygvd()

subroutine ssygvd ( integer itype,
character jobz,
character uplo,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) w,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

SSYGVD

Download SSYGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
!> B are assumed to be symmetric and B is also positive definite.
!> If eigenvectors are desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          matrix Z of eigenvectors.  The eigenvectors are normalized
!>          as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
!>          or the lower triangle (if UPLO='L') of A, including the
!>          diagonal, is destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB, N)
!>          On entry, the symmetric matrix B.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of B contains the
!>          upper triangular part of the matrix B.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of B contains
!>          the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
!>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK >= 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  SPOTRF or SSYEVD returned an error code:
!>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
!>                    failed to converge; i off-diagonal elements of an
!>                    intermediate tridiagonal form did not converge to
!>                    zero;
!>                    if INFO = i and JOBZ = 'V', then the algorithm
!>                    failed to compute an eigenvalue while working on
!>                    the submatrix lying in rows and columns INFO/(N+1)
!>                    through mod(INFO,N+1);
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  Modified so that no backsubstitution is performed if SSYEVD fails to
!>  converge (NEIG in old code could be greater than N causing out of
!>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
!>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
!> 
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 217 of file ssygvd.f.

220*
221* -- LAPACK driver routine --
222* -- LAPACK is a software package provided by Univ. of Tennessee, --
223* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
224*
225* .. Scalar Arguments ..
226 CHARACTER JOBZ, UPLO
227 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
228* ..
229* .. Array Arguments ..
230 INTEGER IWORK( * )
231 REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
232* ..
233*
234* =====================================================================
235*
236* .. Parameters ..
237 REAL ONE
238 parameter( one = 1.0e+0 )
239* ..
240* .. Local Scalars ..
241 LOGICAL LQUERY, UPPER, WANTZ
242 CHARACTER TRANS
243 INTEGER LIOPT, LIWMIN, LOPT, LWMIN
244* ..
245* .. External Functions ..
246 LOGICAL LSAME
247 REAL SROUNDUP_LWORK
248 EXTERNAL lsame, sroundup_lwork
249* ..
250* .. External Subroutines ..
251 EXTERNAL spotrf, ssyevd, ssygst, strmm, strsm,
252 $ xerbla
253* ..
254* .. Intrinsic Functions ..
255 INTRINSIC max, real
256* ..
257* .. Executable Statements ..
258*
259* Test the input parameters.
260*
261 wantz = lsame( jobz, 'V' )
262 upper = lsame( uplo, 'U' )
263 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
264*
265 info = 0
266 IF( n.LE.1 ) THEN
267 liwmin = 1
268 lwmin = 1
269 ELSE IF( wantz ) THEN
270 liwmin = 3 + 5*n
271 lwmin = 1 + 6*n + 2*n**2
272 ELSE
273 liwmin = 1
274 lwmin = 2*n + 1
275 END IF
276 lopt = lwmin
277 liopt = liwmin
278 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
279 info = -1
280 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
281 info = -2
282 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
283 info = -3
284 ELSE IF( n.LT.0 ) THEN
285 info = -4
286 ELSE IF( lda.LT.max( 1, n ) ) THEN
287 info = -6
288 ELSE IF( ldb.LT.max( 1, n ) ) THEN
289 info = -8
290 END IF
291*
292 IF( info.EQ.0 ) THEN
293 work( 1 ) = sroundup_lwork(lopt)
294 iwork( 1 ) = liopt
295*
296 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
297 info = -11
298 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
299 info = -13
300 END IF
301 END IF
302*
303 IF( info.NE.0 ) THEN
304 CALL xerbla( 'SSYGVD', -info )
305 RETURN
306 ELSE IF( lquery ) THEN
307 RETURN
308 END IF
309*
310* Quick return if possible
311*
312 IF( n.EQ.0 )
313 $ RETURN
314*
315* Form a Cholesky factorization of B.
316*
317 CALL spotrf( uplo, n, b, ldb, info )
318 IF( info.NE.0 ) THEN
319 info = n + info
320 RETURN
321 END IF
322*
323* Transform problem to standard eigenvalue problem and solve.
324*
325 CALL ssygst( itype, uplo, n, a, lda, b, ldb, info )
326 CALL ssyevd( jobz, uplo, n, a, lda, w, work, lwork, iwork,
327 $ liwork,
328 $ info )
329 lopt = int( max( real( lopt ), real( work( 1 ) ) ) )
330 liopt = int( max( real( liopt ), real( iwork( 1 ) ) ) )
331*
332 IF( wantz .AND. info.EQ.0 ) THEN
333*
334* Backtransform eigenvectors to the original problem.
335*
336 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
337*
338* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
339* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
340*
341 IF( upper ) THEN
342 trans = 'N'
343 ELSE
344 trans = 'T'
345 END IF
346*
347 CALL strsm( 'Left', uplo, trans, 'Non-unit', n, n, one,
348 $ b, ldb, a, lda )
349*
350 ELSE IF( itype.EQ.3 ) THEN
351*
352* For B*A*x=(lambda)*x;
353* backtransform eigenvectors: x = L*y or U**T*y
354*
355 IF( upper ) THEN
356 trans = 'T'
357 ELSE
358 trans = 'N'
359 END IF
360*
361 CALL strmm( 'Left', uplo, trans, 'Non-unit', n, n, one,
362 $ b, ldb, a, lda )
363 END IF
364 END IF
365*
366 work( 1 ) = sroundup_lwork(lopt)
367 iwork( 1 ) = liopt
368*
369 RETURN
370*
371* End of SSYGVD
372*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevd.f:174
subroutine ssygst(itype, uplo, n, a, lda, b, ldb, info)
SSYGST
Definition ssygst.f:125
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine spotrf(uplo, n, a, lda, info)
SPOTRF
Definition spotrf.f:105
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
subroutine strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRSM
Definition strsm.f:181
Here is the call graph for this function:
Here is the caller graph for this function: