LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cbdt02()

subroutine cbdt02 ( integer  m,
integer  n,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldc, * )  c,
integer  ldc,
complex, dimension( ldu, * )  u,
integer  ldu,
complex, dimension( * )  work,
real, dimension( * )  rwork,
real  resid 
)

CBDT02

Purpose:
 CBDT02 tests the change of basis C = U**H * B by computing the
 residual

    RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ),

 where B and C are M by N matrices, U is an M by M orthogonal matrix,
 and EPS is the machine precision.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrices B and C and the order of
          the matrix Q.
[in]N
          N is INTEGER
          The number of columns of the matrices B and C.
[in]B
          B is COMPLEX array, dimension (LDB,N)
          The m by n matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,M).
[in]C
          C is COMPLEX array, dimension (LDC,N)
          The m by n matrix C, assumed to contain U**H * B.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C.  LDC >= max(1,M).
[in]U
          U is COMPLEX array, dimension (LDU,M)
          The m by m orthogonal matrix U.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U.  LDU >= max(1,M).
[out]WORK
          WORK is COMPLEX array, dimension (M)
[out]RWORK
          RWORK is REAL array, dimension (M)
[out]RESID
          RESID is REAL
          RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ),
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 118 of file cbdt02.f.

120*
121* -- LAPACK test routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 INTEGER LDB, LDC, LDU, M, N
127 REAL RESID
128* ..
129* .. Array Arguments ..
130 REAL RWORK( * )
131 COMPLEX B( LDB, * ), C( LDC, * ), U( LDU, * ),
132 $ WORK( * )
133* ..
134*
135* ======================================================================
136*
137* .. Parameters ..
138 REAL ZERO, ONE
139 parameter( zero = 0.0e+0, one = 1.0e+0 )
140* ..
141* .. Local Scalars ..
142 INTEGER J
143 REAL BNORM, EPS, REALMN
144* ..
145* .. External Functions ..
146 REAL CLANGE, SCASUM, SLAMCH
147 EXTERNAL clange, scasum, slamch
148* ..
149* .. External Subroutines ..
150 EXTERNAL ccopy, cgemv
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC cmplx, max, min, real
154* ..
155* .. Executable Statements ..
156*
157* Quick return if possible
158*
159 resid = zero
160 IF( m.LE.0 .OR. n.LE.0 )
161 $ RETURN
162 realmn = real( max( m, n ) )
163 eps = slamch( 'Precision' )
164*
165* Compute norm(B - U * C)
166*
167 DO 10 j = 1, n
168 CALL ccopy( m, b( 1, j ), 1, work, 1 )
169 CALL cgemv( 'No transpose', m, m, -cmplx( one ), u, ldu,
170 $ c( 1, j ), 1, cmplx( one ), work, 1 )
171 resid = max( resid, scasum( m, work, 1 ) )
172 10 CONTINUE
173*
174* Compute norm of B.
175*
176 bnorm = clange( '1', m, n, b, ldb, rwork )
177*
178 IF( bnorm.LE.zero ) THEN
179 IF( resid.NE.zero )
180 $ resid = one / eps
181 ELSE
182 IF( bnorm.GE.resid ) THEN
183 resid = ( resid / bnorm ) / ( realmn*eps )
184 ELSE
185 IF( bnorm.LT.one ) THEN
186 resid = ( min( resid, realmn*bnorm ) / bnorm ) /
187 $ ( realmn*eps )
188 ELSE
189 resid = min( resid / bnorm, realmn ) / ( realmn*eps )
190 END IF
191 END IF
192 END IF
193 RETURN
194*
195* End of CBDT02
196*
real function scasum(n, cx, incx)
SCASUM
Definition scasum.f:72
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
Here is the call graph for this function:
Here is the caller graph for this function: