LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgbsvxx()

subroutine dgbsvxx ( character fact,
character trans,
integer n,
integer kl,
integer ku,
integer nrhs,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( ldafb, * ) afb,
integer ldafb,
integer, dimension( * ) ipiv,
character equed,
double precision, dimension( * ) r,
double precision, dimension( * ) c,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldx , * ) x,
integer ldx,
double precision rcond,
double precision rpvgrw,
double precision, dimension( * ) berr,
integer n_err_bnds,
double precision, dimension( nrhs, * ) err_bnds_norm,
double precision, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
double precision, dimension( * ) params,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Download DGBSVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    DGBSVXX uses the LU factorization to compute the solution to a
!>    double precision system of linear equations  A * X = B,  where A is an
!>    N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. DGBSVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    DGBSVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    DGBSVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what DGBSVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
!>    the system:
!>
!>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>      A = P * L * U,
!>
!>    where P is a permutation matrix, L is a unit lower triangular
!>    matrix, and U is upper triangular.
!>
!>    3. If some U(i,i)=0, so that U is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND). If the reciprocal of the condition number is less
!>    than machine precision, the routine still goes on to solve for X
!>    and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by R and C.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>     Specifies the form of the system of equations:
!>       = 'N':  A * X = B     (No transpose)
!>       = 'T':  A**T * X = B  (Transpose)
!>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>     The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>     The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>     The j-th column of A is stored in the j-th column of the
!>     array AB as follows:
!>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
!>
!>     If FACT = 'F' and EQUED is not 'N', then AB must have been
!>     equilibrated by the scaling factors in R and/or C.  AB is not
!>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
!>     EQUED = 'N' on exit.
!>
!>     On exit, if EQUED .ne. 'N', A is scaled as follows:
!>     EQUED = 'R':  A := diag(R) * A
!>     EQUED = 'C':  A := A * diag(C)
!>     EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[in,out]AFB
!>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
!>     If FACT = 'F', then AFB is an input argument and on entry
!>     contains details of the LU factorization of the band matrix
!>     A, as computed by DGBTRF.  U is stored as an upper triangular
!>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
!>     and the multipliers used during the factorization are stored
!>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
!>     the factored form of the equilibrated matrix A.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the equilibrated matrix A (see the description of A for
!>     the form of the equilibrated matrix).
!> 
[in]LDAFB
!>          LDAFB is INTEGER
!>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains the pivot indices from the factorization A = P*L*U
!>     as computed by DGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'R':  Row equilibration, i.e., A has been premultiplied by
!>               diag(R).
!>       = 'C':  Column equilibration, i.e., A has been postmultiplied
!>               by diag(C).
!>       = 'B':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(R) * A * diag(C).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]R
!>          R is DOUBLE PRECISION array, dimension (N)
!>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>     is not accessed.  R is an input argument if FACT = 'F';
!>     otherwise, R is an output argument.  If FACT = 'F' and
!>     EQUED = 'R' or 'B', each element of R must be positive.
!>     If R is output, each element of R is a power of the radix.
!>     If R is input, each element of R should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>     is not accessed.  C is an input argument if FACT = 'F';
!>     otherwise, C is an output argument.  If FACT = 'F' and
!>     EQUED = 'C' or 'B', each element of C must be positive.
!>     If C is output, each element of C is a power of the radix.
!>     If C is input, each element of C should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>        diag(R)*B;
!>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>        overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit
!>     if EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
!>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is DOUBLE PRECISION
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.  In DGESVX, this quantity is
!>     returned in WORK(1).
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0D+0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the extra-precise refinement algorithm.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 553 of file dgbsvxx.f.

559*
560* -- LAPACK driver routine --
561* -- LAPACK is a software package provided by Univ. of Tennessee, --
562* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
563*
564* .. Scalar Arguments ..
565 CHARACTER EQUED, FACT, TRANS
566 INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
567 $ N_ERR_BNDS, KL, KU
568 DOUBLE PRECISION RCOND, RPVGRW
569* ..
570* .. Array Arguments ..
571 INTEGER IPIV( * ), IWORK( * )
572 DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
573 $ X( LDX , * ),WORK( * )
574 DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
575 $ ERR_BNDS_NORM( NRHS, * ),
576 $ ERR_BNDS_COMP( NRHS, * )
577* ..
578*
579* ==================================================================
580*
581* .. Parameters ..
582 DOUBLE PRECISION ZERO, ONE
583 parameter( zero = 0.0d+0, one = 1.0d+0 )
584 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
585 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
586 INTEGER CMP_ERR_I, PIV_GROWTH_I
587 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
588 $ berr_i = 3 )
589 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
590 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
591 $ piv_growth_i = 9 )
592* ..
593* .. Local Scalars ..
594 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
595 INTEGER INFEQU, I, J
596 DOUBLE PRECISION AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
597 $ ROWCND, SMLNUM
598* ..
599* .. External Functions ..
600 EXTERNAL lsame, dlamch, dla_gbrpvgrw
601 LOGICAL LSAME
602 DOUBLE PRECISION DLAMCH, DLA_GBRPVGRW
603* ..
604* .. External Subroutines ..
605 EXTERNAL dgbequb, dgbtrf, dgbtrs, dlacpy,
606 $ dlaqgb,
608* ..
609* .. Intrinsic Functions ..
610 INTRINSIC max, min
611* ..
612* .. Executable Statements ..
613*
614 info = 0
615 nofact = lsame( fact, 'N' )
616 equil = lsame( fact, 'E' )
617 notran = lsame( trans, 'N' )
618 smlnum = dlamch( 'Safe minimum' )
619 bignum = one / smlnum
620 IF( nofact .OR. equil ) THEN
621 equed = 'N'
622 rowequ = .false.
623 colequ = .false.
624 ELSE
625 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
626 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
627 END IF
628*
629* Default is failure. If an input parameter is wrong or
630* factorization fails, make everything look horrible. Only the
631* pivot growth is set here, the rest is initialized in DGBRFSX.
632*
633 rpvgrw = zero
634*
635* Test the input parameters. PARAMS is not tested until DGBRFSX.
636*
637 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
638 $ lsame( fact, 'F' ) ) THEN
639 info = -1
640 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
641 $ lsame( trans, 'C' ) ) THEN
642 info = -2
643 ELSE IF( n.LT.0 ) THEN
644 info = -3
645 ELSE IF( kl.LT.0 ) THEN
646 info = -4
647 ELSE IF( ku.LT.0 ) THEN
648 info = -5
649 ELSE IF( nrhs.LT.0 ) THEN
650 info = -6
651 ELSE IF( ldab.LT.kl+ku+1 ) THEN
652 info = -8
653 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
654 info = -10
655 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
656 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
657 info = -12
658 ELSE
659 IF( rowequ ) THEN
660 rcmin = bignum
661 rcmax = zero
662 DO 10 j = 1, n
663 rcmin = min( rcmin, r( j ) )
664 rcmax = max( rcmax, r( j ) )
665 10 CONTINUE
666 IF( rcmin.LE.zero ) THEN
667 info = -13
668 ELSE IF( n.GT.0 ) THEN
669 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
670 ELSE
671 rowcnd = one
672 END IF
673 END IF
674 IF( colequ .AND. info.EQ.0 ) THEN
675 rcmin = bignum
676 rcmax = zero
677 DO 20 j = 1, n
678 rcmin = min( rcmin, c( j ) )
679 rcmax = max( rcmax, c( j ) )
680 20 CONTINUE
681 IF( rcmin.LE.zero ) THEN
682 info = -14
683 ELSE IF( n.GT.0 ) THEN
684 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
685 ELSE
686 colcnd = one
687 END IF
688 END IF
689 IF( info.EQ.0 ) THEN
690 IF( ldb.LT.max( 1, n ) ) THEN
691 info = -15
692 ELSE IF( ldx.LT.max( 1, n ) ) THEN
693 info = -16
694 END IF
695 END IF
696 END IF
697*
698 IF( info.NE.0 ) THEN
699 CALL xerbla( 'DGBSVXX', -info )
700 RETURN
701 END IF
702*
703 IF( equil ) THEN
704*
705* Compute row and column scalings to equilibrate the matrix A.
706*
707 CALL dgbequb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
708 $ amax, infequ )
709 IF( infequ.EQ.0 ) THEN
710*
711* Equilibrate the matrix.
712*
713 CALL dlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd,
714 $ colcnd,
715 $ amax, equed )
716 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
717 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
718 END IF
719*
720* If the scaling factors are not applied, set them to 1.0.
721*
722 IF ( .NOT.rowequ ) THEN
723 DO j = 1, n
724 r( j ) = 1.0d+0
725 END DO
726 END IF
727 IF ( .NOT.colequ ) THEN
728 DO j = 1, n
729 c( j ) = 1.0d+0
730 END DO
731 END IF
732 END IF
733*
734* Scale the right hand side.
735*
736 IF( notran ) THEN
737 IF( rowequ ) CALL dlascl2(n, nrhs, r, b, ldb)
738 ELSE
739 IF( colequ ) CALL dlascl2(n, nrhs, c, b, ldb)
740 END IF
741*
742 IF( nofact .OR. equil ) THEN
743*
744* Compute the LU factorization of A.
745*
746 DO 40, j = 1, n
747 DO 30, i = kl+1, 2*kl+ku+1
748 afb( i, j ) = ab( i-kl, j )
749 30 CONTINUE
750 40 CONTINUE
751 CALL dgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
752*
753* Return if INFO is non-zero.
754*
755 IF( info.GT.0 ) THEN
756*
757* Pivot in column INFO is exactly 0
758* Compute the reciprocal pivot growth factor of the
759* leading rank-deficient INFO columns of A.
760*
761 rpvgrw = dla_gbrpvgrw( n, kl, ku, info, ab, ldab, afb,
762 $ ldafb )
763 RETURN
764 END IF
765 END IF
766*
767* Compute the reciprocal pivot growth factor RPVGRW.
768*
769 rpvgrw = dla_gbrpvgrw( n, kl, ku, n, ab, ldab, afb, ldafb )
770*
771* Compute the solution matrix X.
772*
773 CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
774 CALL dgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
775 $ info )
776*
777* Use iterative refinement to improve the computed solution and
778* compute error bounds and backward error estimates for it.
779*
780 CALL dgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb,
781 $ ldafb,
782 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
783 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
784 $ work, iwork, info )
785*
786* Scale solutions.
787*
788 IF ( colequ .AND. notran ) THEN
789 CALL dlascl2 ( n, nrhs, c, x, ldx )
790 ELSE IF ( rowequ .AND. .NOT.notran ) THEN
791 CALL dlascl2 ( n, nrhs, r, x, ldx )
792 END IF
793*
794 RETURN
795*
796* End of DGBSVXX
797*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgbequb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
DGBEQUB
Definition dgbequb.f:159
subroutine dgbrfsx(trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
DGBRFSX
Definition dgbrfsx.f:439
subroutine dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
DGBTRF
Definition dgbtrf.f:142
subroutine dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
Definition dgbtrs.f:137
double precision function dla_gbrpvgrw(n, kl, ku, ncols, ab, ldab, afb, ldafb)
DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
DLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
Definition dlaqgb.f:158
subroutine dlascl2(m, n, d, x, ldx)
DLASCL2 performs diagonal scaling on a matrix.
Definition dlascl2.f:88
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: