LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_herfsx_extended()

subroutine zla_herfsx_extended ( integer  prec_type,
character  uplo,
integer  n,
integer  nrhs,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
logical  colequ,
double precision, dimension( * )  c,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( ldy, * )  y,
integer  ldy,
double precision, dimension( * )  berr_out,
integer  n_norms,
double precision, dimension( nrhs, * )  err_bnds_norm,
double precision, dimension( nrhs, * )  err_bnds_comp,
complex*16, dimension( * )  res,
double precision, dimension( * )  ayb,
complex*16, dimension( * )  dy,
complex*16, dimension( * )  y_tail,
double precision  rcond,
integer  ithresh,
double precision  rthresh,
double precision  dz_ub,
logical  ignore_cwise,
integer  info 
)

ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download ZLA_HERFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLA_HERFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by ZHERFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZHETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by ZHETRF.
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is DOUBLE PRECISION array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX*16 array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by ZHETRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by ZLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX*16 array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX*16 array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX*16 array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is DOUBLE PRECISION
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is DOUBLE PRECISION
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is DOUBLE PRECISION
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to ZLA_HERFSX_EXTENDED had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 388 of file zla_herfsx_extended.f.

395*
396* -- LAPACK computational routine --
397* -- LAPACK is a software package provided by Univ. of Tennessee, --
398* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
399*
400* .. Scalar Arguments ..
401 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
402 $ N_NORMS, ITHRESH
403 CHARACTER UPLO
404 LOGICAL COLEQU, IGNORE_CWISE
405 DOUBLE PRECISION RTHRESH, DZ_UB
406* ..
407* .. Array Arguments ..
408 INTEGER IPIV( * )
409 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
410 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
411 DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
412 $ ERR_BNDS_NORM( NRHS, * ),
413 $ ERR_BNDS_COMP( NRHS, * )
414* ..
415*
416* =====================================================================
417*
418* .. Local Scalars ..
419 INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE,
420 $ Y_PREC_STATE
421 DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
422 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
423 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
424 $ EPS, HUGEVAL, INCR_THRESH
425 LOGICAL INCR_PREC, UPPER
426 COMPLEX*16 ZDUM
427* ..
428* .. Parameters ..
429 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
430 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
431 $ EXTRA_Y
432 parameter( unstable_state = 0, working_state = 1,
433 $ conv_state = 2, noprog_state = 3 )
434 parameter( base_residual = 0, extra_residual = 1,
435 $ extra_y = 2 )
436 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
437 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
438 INTEGER CMP_ERR_I, PIV_GROWTH_I
439 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
440 $ berr_i = 3 )
441 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
442 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
443 $ piv_growth_i = 9 )
444 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
445 $ LA_LINRX_CWISE_I
446 parameter( la_linrx_itref_i = 1,
447 $ la_linrx_ithresh_i = 2 )
448 parameter( la_linrx_cwise_i = 3 )
449 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
450 $ LA_LINRX_RCOND_I
451 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
452 parameter( la_linrx_rcond_i = 3 )
453* ..
454* .. External Functions ..
455 LOGICAL LSAME
456 EXTERNAL ilauplo
457 INTEGER ILAUPLO
458* ..
459* .. External Subroutines ..
460 EXTERNAL zaxpy, zcopy, zhetrs, zhemv, blas_zhemv_x,
461 $ blas_zhemv2_x, zla_heamv, zla_wwaddw,
463 DOUBLE PRECISION DLAMCH
464* ..
465* .. Intrinsic Functions ..
466 INTRINSIC abs, dble, dimag, max, min
467* ..
468* .. Statement Functions ..
469 DOUBLE PRECISION CABS1
470* ..
471* .. Statement Function Definitions ..
472 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
473* ..
474* .. Executable Statements ..
475*
476 info = 0
477 upper = lsame( uplo, 'U' )
478 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
479 info = -2
480 ELSE IF( n.LT.0 ) THEN
481 info = -3
482 ELSE IF( nrhs.LT.0 ) THEN
483 info = -4
484 ELSE IF( lda.LT.max( 1, n ) ) THEN
485 info = -6
486 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
487 info = -8
488 ELSE IF( ldb.LT.max( 1, n ) ) THEN
489 info = -13
490 ELSE IF( ldy.LT.max( 1, n ) ) THEN
491 info = -15
492 END IF
493 IF( info.NE.0 ) THEN
494 CALL xerbla( 'ZLA_HERFSX_EXTENDED', -info )
495 RETURN
496 END IF
497 eps = dlamch( 'Epsilon' )
498 hugeval = dlamch( 'Overflow' )
499* Force HUGEVAL to Inf
500 hugeval = hugeval * hugeval
501* Using HUGEVAL may lead to spurious underflows.
502 incr_thresh = dble( n ) * eps
503
504 IF ( lsame( uplo, 'L' ) ) THEN
505 uplo2 = ilauplo( 'L' )
506 ELSE
507 uplo2 = ilauplo( 'U' )
508 ENDIF
509
510 DO j = 1, nrhs
511 y_prec_state = extra_residual
512 IF ( y_prec_state .EQ. extra_y ) THEN
513 DO i = 1, n
514 y_tail( i ) = 0.0d+0
515 END DO
516 END IF
517
518 dxrat = 0.0d+0
519 dxratmax = 0.0d+0
520 dzrat = 0.0d+0
521 dzratmax = 0.0d+0
522 final_dx_x = hugeval
523 final_dz_z = hugeval
524 prevnormdx = hugeval
525 prev_dz_z = hugeval
526 dz_z = hugeval
527 dx_x = hugeval
528
529 x_state = working_state
530 z_state = unstable_state
531 incr_prec = .false.
532
533 DO cnt = 1, ithresh
534*
535* Compute residual RES = B_s - op(A_s) * Y,
536* op(A) = A, A**T, or A**H depending on TRANS (and type).
537*
538 CALL zcopy( n, b( 1, j ), 1, res, 1 )
539 IF ( y_prec_state .EQ. base_residual ) THEN
540 CALL zhemv( uplo, n, dcmplx(-1.0d+0), a, lda, y( 1, j ),
541 $ 1, dcmplx(1.0d+0), res, 1 )
542 ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
543 CALL blas_zhemv_x( uplo2, n, dcmplx(-1.0d+0), a, lda,
544 $ y( 1, j ), 1, dcmplx(1.0d+0), res, 1, prec_type)
545 ELSE
546 CALL blas_zhemv2_x(uplo2, n, dcmplx(-1.0d+0), a, lda,
547 $ y(1, j), y_tail, 1, dcmplx(1.0d+0), res, 1,
548 $ prec_type)
549 END IF
550
551! XXX: RES is no longer needed.
552 CALL zcopy( n, res, 1, dy, 1 )
553 CALL zhetrs( uplo, n, 1, af, ldaf, ipiv, dy, n, info )
554*
555* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
556*
557 normx = 0.0d+0
558 normy = 0.0d+0
559 normdx = 0.0d+0
560 dz_z = 0.0d+0
561 ymin = hugeval
562
563 DO i = 1, n
564 yk = cabs1( y( i, j ) )
565 dyk = cabs1( dy( i ) )
566
567 IF (yk .NE. 0.0d+0) THEN
568 dz_z = max( dz_z, dyk / yk )
569 ELSE IF ( dyk .NE. 0.0d+0 ) THEN
570 dz_z = hugeval
571 END IF
572
573 ymin = min( ymin, yk )
574
575 normy = max( normy, yk )
576
577 IF ( colequ ) THEN
578 normx = max( normx, yk * c( i ) )
579 normdx = max( normdx, dyk * c( i ) )
580 ELSE
581 normx = normy
582 normdx = max( normdx, dyk )
583 END IF
584 END DO
585
586 IF ( normx .NE. 0.0d+0 ) THEN
587 dx_x = normdx / normx
588 ELSE IF ( normdx .EQ. 0.0d+0 ) THEN
589 dx_x = 0.0d+0
590 ELSE
591 dx_x = hugeval
592 END IF
593
594 dxrat = normdx / prevnormdx
595 dzrat = dz_z / prev_dz_z
596*
597* Check termination criteria.
598*
599 IF ( ymin*rcond .LT. incr_thresh*normy
600 $ .AND. y_prec_state .LT. extra_y )
601 $ incr_prec = .true.
602
603 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
604 $ x_state = working_state
605 IF ( x_state .EQ. working_state ) THEN
606 IF ( dx_x .LE. eps ) THEN
607 x_state = conv_state
608 ELSE IF ( dxrat .GT. rthresh ) THEN
609 IF ( y_prec_state .NE. extra_y ) THEN
610 incr_prec = .true.
611 ELSE
612 x_state = noprog_state
613 END IF
614 ELSE
615 IF (dxrat .GT. dxratmax) dxratmax = dxrat
616 END IF
617 IF ( x_state .GT. working_state ) final_dx_x = dx_x
618 END IF
619
620 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
621 $ z_state = working_state
622 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
623 $ z_state = working_state
624 IF ( z_state .EQ. working_state ) THEN
625 IF ( dz_z .LE. eps ) THEN
626 z_state = conv_state
627 ELSE IF ( dz_z .GT. dz_ub ) THEN
628 z_state = unstable_state
629 dzratmax = 0.0d+0
630 final_dz_z = hugeval
631 ELSE IF ( dzrat .GT. rthresh ) THEN
632 IF ( y_prec_state .NE. extra_y ) THEN
633 incr_prec = .true.
634 ELSE
635 z_state = noprog_state
636 END IF
637 ELSE
638 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
639 END IF
640 IF ( z_state .GT. working_state ) final_dz_z = dz_z
641 END IF
642
643 IF ( x_state.NE.working_state.AND.
644 $ ( ignore_cwise.OR.z_state.NE.working_state ) )
645 $ GOTO 666
646
647 IF ( incr_prec ) THEN
648 incr_prec = .false.
649 y_prec_state = y_prec_state + 1
650 DO i = 1, n
651 y_tail( i ) = 0.0d+0
652 END DO
653 END IF
654
655 prevnormdx = normdx
656 prev_dz_z = dz_z
657*
658* Update solution.
659*
660 IF ( y_prec_state .LT. extra_y ) THEN
661 CALL zaxpy( n, dcmplx(1.0d+0), dy, 1, y(1,j), 1 )
662 ELSE
663 CALL zla_wwaddw( n, y(1,j), y_tail, dy )
664 END IF
665
666 END DO
667* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
668 666 CONTINUE
669*
670* Set final_* when cnt hits ithresh.
671*
672 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
673 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
674*
675* Compute error bounds.
676*
677 IF ( n_norms .GE. 1 ) THEN
678 err_bnds_norm( j, la_linrx_err_i ) =
679 $ final_dx_x / (1 - dxratmax)
680 END IF
681 IF (n_norms .GE. 2) THEN
682 err_bnds_comp( j, la_linrx_err_i ) =
683 $ final_dz_z / (1 - dzratmax)
684 END IF
685*
686* Compute componentwise relative backward error from formula
687* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
688* where abs(Z) is the componentwise absolute value of the matrix
689* or vector Z.
690*
691* Compute residual RES = B_s - op(A_s) * Y,
692* op(A) = A, A**T, or A**H depending on TRANS (and type).
693*
694 CALL zcopy( n, b( 1, j ), 1, res, 1 )
695 CALL zhemv( uplo, n, dcmplx(-1.0d+0), a, lda, y(1,j), 1,
696 $ dcmplx(1.0d+0), res, 1 )
697
698 DO i = 1, n
699 ayb( i ) = cabs1( b( i, j ) )
700 END DO
701*
702* Compute abs(op(A_s))*abs(Y) + abs(B_s).
703*
704 CALL zla_heamv( uplo2, n, 1.0d+0,
705 $ a, lda, y(1, j), 1, 1.0d+0, ayb, 1 )
706
707 CALL zla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
708*
709* End of loop for each RHS.
710*
711 END DO
712*
713 RETURN
714*
715* End of ZLA_HERFSX_EXTENDED
716*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZHEMV
Definition zhemv.f:154
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
Definition zhetrs.f:120
integer function ilauplo(uplo)
ILAUPLO
Definition ilauplo.f:58
subroutine zla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bou...
Definition zla_heamv.f:178
subroutine zla_lin_berr(n, nz, nrhs, res, ayb, berr)
ZLA_LIN_BERR computes a component-wise relative backward error.
subroutine zla_wwaddw(n, x, y, w)
ZLA_WWADDW adds a vector into a doubled-single vector.
Definition zla_wwaddw.f:81
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: