LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cla_herfsx_extended()

subroutine cla_herfsx_extended ( integer  prec_type,
character  uplo,
integer  n,
integer  nrhs,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
logical  colequ,
real, dimension( * )  c,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldy, * )  y,
integer  ldy,
real, dimension( * )  berr_out,
integer  n_norms,
real, dimension( nrhs, * )  err_bnds_norm,
real, dimension( nrhs, * )  err_bnds_comp,
complex, dimension( * )  res,
real, dimension( * )  ayb,
complex, dimension( * )  dy,
complex, dimension( * )  y_tail,
real  rcond,
integer  ithresh,
real  rthresh,
real  dz_ub,
logical  ignore_cwise,
integer  info 
)

CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download CLA_HERFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLA_HERFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by CHERFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is REAL array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by CHETRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is REAL array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by CLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is REAL array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is REAL
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is REAL
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to CLA_HERFSX_EXTENDED had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 388 of file cla_herfsx_extended.f.

395*
396* -- LAPACK computational routine --
397* -- LAPACK is a software package provided by Univ. of Tennessee, --
398* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
399*
400* .. Scalar Arguments ..
401 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
402 $ N_NORMS, ITHRESH
403 CHARACTER UPLO
404 LOGICAL COLEQU, IGNORE_CWISE
405 REAL RTHRESH, DZ_UB
406* ..
407* .. Array Arguments ..
408 INTEGER IPIV( * )
409 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
410 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
411 REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
412 $ ERR_BNDS_NORM( NRHS, * ),
413 $ ERR_BNDS_COMP( NRHS, * )
414* ..
415*
416* =====================================================================
417*
418* .. Local Scalars ..
419 INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE,
420 $ Y_PREC_STATE
421 REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
422 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
423 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
424 $ EPS, HUGEVAL, INCR_THRESH
425 LOGICAL INCR_PREC, UPPER
426 COMPLEX ZDUM
427* ..
428* .. Parameters ..
429 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
430 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
431 $ EXTRA_Y
432 parameter( unstable_state = 0, working_state = 1,
433 $ conv_state = 2, noprog_state = 3 )
434 parameter( base_residual = 0, extra_residual = 1,
435 $ extra_y = 2 )
436 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
437 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
438 INTEGER CMP_ERR_I, PIV_GROWTH_I
439 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
440 $ berr_i = 3 )
441 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
442 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
443 $ piv_growth_i = 9 )
444 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
445 $ LA_LINRX_CWISE_I
446 parameter( la_linrx_itref_i = 1,
447 $ la_linrx_ithresh_i = 2 )
448 parameter( la_linrx_cwise_i = 3 )
449 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
450 $ LA_LINRX_RCOND_I
451 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
452 parameter( la_linrx_rcond_i = 3 )
453* ..
454* .. External Functions ..
455 LOGICAL LSAME
456 EXTERNAL ilauplo
457 INTEGER ILAUPLO
458* ..
459* .. External Subroutines ..
460 EXTERNAL caxpy, ccopy, chetrs, chemv, blas_chemv_x,
461 $ blas_chemv2_x, cla_heamv, cla_wwaddw,
463 REAL SLAMCH
464* ..
465* .. Intrinsic Functions ..
466 INTRINSIC abs, real, aimag, max, min
467* ..
468* .. Statement Functions ..
469 REAL CABS1
470* ..
471* .. Statement Function Definitions ..
472 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
473* ..
474* .. Executable Statements ..
475*
476 info = 0
477 upper = lsame( uplo, 'U' )
478 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
479 info = -2
480 ELSE IF( n.LT.0 ) THEN
481 info = -3
482 ELSE IF( nrhs.LT.0 ) THEN
483 info = -4
484 ELSE IF( lda.LT.max( 1, n ) ) THEN
485 info = -6
486 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
487 info = -8
488 ELSE IF( ldb.LT.max( 1, n ) ) THEN
489 info = -13
490 ELSE IF( ldy.LT.max( 1, n ) ) THEN
491 info = -15
492 END IF
493 IF( info.NE.0 ) THEN
494 CALL xerbla( 'CLA_HERFSX_EXTENDED', -info )
495 RETURN
496 END IF
497 eps = slamch( 'Epsilon' )
498 hugeval = slamch( 'Overflow' )
499* Force HUGEVAL to Inf
500 hugeval = hugeval * hugeval
501* Using HUGEVAL may lead to spurious underflows.
502 incr_thresh = real( n ) * eps
503
504 IF ( lsame( uplo, 'L' ) ) THEN
505 uplo2 = ilauplo( 'L' )
506 ELSE
507 uplo2 = ilauplo( 'U' )
508 ENDIF
509
510 DO j = 1, nrhs
511 y_prec_state = extra_residual
512 IF ( y_prec_state .EQ. extra_y ) THEN
513 DO i = 1, n
514 y_tail( i ) = 0.0
515 END DO
516 END IF
517
518 dxrat = 0.0
519 dxratmax = 0.0
520 dzrat = 0.0
521 dzratmax = 0.0
522 final_dx_x = hugeval
523 final_dz_z = hugeval
524 prevnormdx = hugeval
525 prev_dz_z = hugeval
526 dz_z = hugeval
527 dx_x = hugeval
528
529 x_state = working_state
530 z_state = unstable_state
531 incr_prec = .false.
532
533 DO cnt = 1, ithresh
534*
535* Compute residual RES = B_s - op(A_s) * Y,
536* op(A) = A, A**T, or A**H depending on TRANS (and type).
537*
538 CALL ccopy( n, b( 1, j ), 1, res, 1 )
539 IF ( y_prec_state .EQ. base_residual ) THEN
540 CALL chemv( uplo, n, cmplx(-1.0), a, lda, y( 1, j ), 1,
541 $ cmplx(1.0), res, 1 )
542 ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
543 CALL blas_chemv_x( uplo2, n, cmplx(-1.0), a, lda,
544 $ y( 1, j ), 1, cmplx(1.0), res, 1, prec_type)
545 ELSE
546 CALL blas_chemv2_x(uplo2, n, cmplx(-1.0), a, lda,
547 $ y(1, j), y_tail, 1, cmplx(1.0), res, 1, prec_type)
548 END IF
549
550! XXX: RES is no longer needed.
551 CALL ccopy( n, res, 1, dy, 1 )
552 CALL chetrs( uplo, n, 1, af, ldaf, ipiv, dy, n, info )
553*
554* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
555*
556 normx = 0.0
557 normy = 0.0
558 normdx = 0.0
559 dz_z = 0.0
560 ymin = hugeval
561
562 DO i = 1, n
563 yk = cabs1( y( i, j ) )
564 dyk = cabs1( dy( i ) )
565
566 IF (yk .NE. 0.0) THEN
567 dz_z = max( dz_z, dyk / yk )
568 ELSE IF ( dyk .NE. 0.0 ) THEN
569 dz_z = hugeval
570 END IF
571
572 ymin = min( ymin, yk )
573
574 normy = max( normy, yk )
575
576 IF ( colequ ) THEN
577 normx = max( normx, yk * c( i ) )
578 normdx = max( normdx, dyk * c( i ) )
579 ELSE
580 normx = normy
581 normdx = max( normdx, dyk )
582 END IF
583 END DO
584
585 IF ( normx .NE. 0.0 ) THEN
586 dx_x = normdx / normx
587 ELSE IF ( normdx .EQ. 0.0 ) THEN
588 dx_x = 0.0
589 ELSE
590 dx_x = hugeval
591 END IF
592
593 dxrat = normdx / prevnormdx
594 dzrat = dz_z / prev_dz_z
595*
596* Check termination criteria.
597*
598 IF ( ymin*rcond .LT. incr_thresh*normy
599 $ .AND. y_prec_state .LT. extra_y )
600 $ incr_prec = .true.
601
602 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
603 $ x_state = working_state
604 IF ( x_state .EQ. working_state ) THEN
605 IF ( dx_x .LE. eps ) THEN
606 x_state = conv_state
607 ELSE IF ( dxrat .GT. rthresh ) THEN
608 IF ( y_prec_state .NE. extra_y ) THEN
609 incr_prec = .true.
610 ELSE
611 x_state = noprog_state
612 END IF
613 ELSE
614 IF (dxrat .GT. dxratmax) dxratmax = dxrat
615 END IF
616 IF ( x_state .GT. working_state ) final_dx_x = dx_x
617 END IF
618
619 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
620 $ z_state = working_state
621 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
622 $ z_state = working_state
623 IF ( z_state .EQ. working_state ) THEN
624 IF ( dz_z .LE. eps ) THEN
625 z_state = conv_state
626 ELSE IF ( dz_z .GT. dz_ub ) THEN
627 z_state = unstable_state
628 dzratmax = 0.0
629 final_dz_z = hugeval
630 ELSE IF ( dzrat .GT. rthresh ) THEN
631 IF ( y_prec_state .NE. extra_y ) THEN
632 incr_prec = .true.
633 ELSE
634 z_state = noprog_state
635 END IF
636 ELSE
637 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
638 END IF
639 IF ( z_state .GT. working_state ) final_dz_z = dz_z
640 END IF
641
642 IF ( x_state.NE.working_state.AND.
643 $ ( ignore_cwise.OR.z_state.NE.working_state ) )
644 $ GOTO 666
645
646 IF ( incr_prec ) THEN
647 incr_prec = .false.
648 y_prec_state = y_prec_state + 1
649 DO i = 1, n
650 y_tail( i ) = 0.0
651 END DO
652 END IF
653
654 prevnormdx = normdx
655 prev_dz_z = dz_z
656*
657* Update solution.
658*
659 IF ( y_prec_state .LT. extra_y ) THEN
660 CALL caxpy( n, cmplx(1.0), dy, 1, y(1,j), 1 )
661 ELSE
662 CALL cla_wwaddw( n, y(1,j), y_tail, dy )
663 END IF
664
665 END DO
666* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
667 666 CONTINUE
668*
669* Set final_* when cnt hits ithresh.
670*
671 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
672 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
673*
674* Compute error bounds.
675*
676 IF ( n_norms .GE. 1 ) THEN
677 err_bnds_norm( j, la_linrx_err_i ) =
678 $ final_dx_x / (1 - dxratmax)
679 END IF
680 IF (n_norms .GE. 2) THEN
681 err_bnds_comp( j, la_linrx_err_i ) =
682 $ final_dz_z / (1 - dzratmax)
683 END IF
684*
685* Compute componentwise relative backward error from formula
686* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
687* where abs(Z) is the componentwise absolute value of the matrix
688* or vector Z.
689*
690* Compute residual RES = B_s - op(A_s) * Y,
691* op(A) = A, A**T, or A**H depending on TRANS (and type).
692*
693 CALL ccopy( n, b( 1, j ), 1, res, 1 )
694 CALL chemv( uplo, n, cmplx(-1.0), a, lda, y(1,j), 1,
695 $ cmplx(1.0), res, 1 )
696
697 DO i = 1, n
698 ayb( i ) = cabs1( b( i, j ) )
699 END DO
700*
701* Compute abs(op(A_s))*abs(Y) + abs(B_s).
702*
703 CALL cla_heamv( uplo2, n, 1.0,
704 $ a, lda, y(1, j), 1, 1.0, ayb, 1 )
705
706 CALL cla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
707*
708* End of loop for each RHS.
709*
710 END DO
711*
712 RETURN
713*
714* End of CLA_HERFSX_EXTENDED
715*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
CHEMV
Definition chemv.f:154
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:120
integer function ilauplo(uplo)
ILAUPLO
Definition ilauplo.f:58
subroutine cla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
CLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bou...
Definition cla_heamv.f:178
subroutine cla_lin_berr(n, nz, nrhs, res, ayb, berr)
CLA_LIN_BERR computes a component-wise relative backward error.
subroutine cla_wwaddw(n, x, y, w)
CLA_WWADDW adds a vector into a doubled-single vector.
Definition cla_wwaddw.f:81
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: