LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dla_gbrfsx_extended()

subroutine dla_gbrfsx_extended ( integer  prec_type,
integer  trans_type,
integer  n,
integer  kl,
integer  ku,
integer  nrhs,
double precision, dimension( ldab, * )  ab,
integer  ldab,
double precision, dimension( ldafb, * )  afb,
integer  ldafb,
integer, dimension( * )  ipiv,
logical  colequ,
double precision, dimension( * )  c,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( ldy, * )  y,
integer  ldy,
double precision, dimension(*)  berr_out,
integer  n_norms,
double precision, dimension( nrhs, * )  err_bnds_norm,
double precision, dimension( nrhs, * )  err_bnds_comp,
double precision, dimension(*)  res,
double precision, dimension(*)  ayb,
double precision, dimension(*)  dy,
double precision, dimension(*)  y_tail,
double precision  rcond,
integer  ithresh,
double precision  rthresh,
double precision  dz_ub,
logical  ignore_cwise,
integer  info 
)

DLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download DLA_GBRFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLA_GBRFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by DGBRFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]TRANS_TYPE
          TRANS_TYPE is INTEGER
     Specifies the transposition operation on A.
     The value is defined by ILATRANS(T) where T is a CHARACTER and T
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]KL
          KL is INTEGER
     The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
     The number of superdiagonals within the band of A.  KU >= 0
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]AB
          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          On entry, the N-by-N matrix AB.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDBA >= max(1,N).
[in]AFB
          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
     The factors L and U from the factorization
     A = P*L*U as computed by DGBTRF.
[in]LDAFB
          LDAFB is INTEGER
     The leading dimension of the array AF.  LDAFB >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by DGBTRF; row i of the matrix was interchanged
     with row IPIV(i).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is DOUBLE PRECISION array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by DGBTRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by DLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N)
     Workspace. This can be the same workspace passed for Y_TAIL.
[in]DY
          DY is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is DOUBLE PRECISION
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is DOUBLE PRECISION
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is DOUBLE PRECISION
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 404 of file dla_gbrfsx_extended.f.

411*
412* -- LAPACK computational routine --
413* -- LAPACK is a software package provided by Univ. of Tennessee, --
414* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
415*
416* .. Scalar Arguments ..
417 INTEGER INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
418 $ PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
419 LOGICAL COLEQU, IGNORE_CWISE
420 DOUBLE PRECISION RTHRESH, DZ_UB
421* ..
422* .. Array Arguments ..
423 INTEGER IPIV( * )
424 DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
425 $ Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
426 DOUBLE PRECISION C( * ), AYB(*), RCOND, BERR_OUT(*),
427 $ ERR_BNDS_NORM( NRHS, * ),
428 $ ERR_BNDS_COMP( NRHS, * )
429* ..
430*
431* =====================================================================
432*
433* .. Local Scalars ..
434 CHARACTER TRANS
435 INTEGER CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
436 DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
437 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
438 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
439 $ EPS, HUGEVAL, INCR_THRESH
440 LOGICAL INCR_PREC
441* ..
442* .. Parameters ..
443 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
444 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
445 $ EXTRA_Y
446 parameter( unstable_state = 0, working_state = 1,
447 $ conv_state = 2, noprog_state = 3 )
448 parameter( base_residual = 0, extra_residual = 1,
449 $ extra_y = 2 )
450 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
451 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
452 INTEGER CMP_ERR_I, PIV_GROWTH_I
453 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
454 $ berr_i = 3 )
455 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
456 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
457 $ piv_growth_i = 9 )
458 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
459 $ LA_LINRX_CWISE_I
460 parameter( la_linrx_itref_i = 1,
461 $ la_linrx_ithresh_i = 2 )
462 parameter( la_linrx_cwise_i = 3 )
463 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
464 $ LA_LINRX_RCOND_I
465 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
466 parameter( la_linrx_rcond_i = 3 )
467* ..
468* .. External Subroutines ..
469 EXTERNAL daxpy, dcopy, dgbtrs, dgbmv, blas_dgbmv_x,
470 $ blas_dgbmv2_x, dla_gbamv, dla_wwaddw, dlamch,
472 DOUBLE PRECISION DLAMCH
473 CHARACTER CHLA_TRANSTYPE
474* ..
475* .. Intrinsic Functions ..
476 INTRINSIC abs, max, min
477* ..
478* .. Executable Statements ..
479*
480 IF (info.NE.0) RETURN
481 trans = chla_transtype(trans_type)
482 eps = dlamch( 'Epsilon' )
483 hugeval = dlamch( 'Overflow' )
484* Force HUGEVAL to Inf
485 hugeval = hugeval * hugeval
486* Using HUGEVAL may lead to spurious underflows.
487 incr_thresh = dble( n ) * eps
488 m = kl+ku+1
489
490 DO j = 1, nrhs
491 y_prec_state = extra_residual
492 IF ( y_prec_state .EQ. extra_y ) THEN
493 DO i = 1, n
494 y_tail( i ) = 0.0d+0
495 END DO
496 END IF
497
498 dxrat = 0.0d+0
499 dxratmax = 0.0d+0
500 dzrat = 0.0d+0
501 dzratmax = 0.0d+0
502 final_dx_x = hugeval
503 final_dz_z = hugeval
504 prevnormdx = hugeval
505 prev_dz_z = hugeval
506 dz_z = hugeval
507 dx_x = hugeval
508
509 x_state = working_state
510 z_state = unstable_state
511 incr_prec = .false.
512
513 DO cnt = 1, ithresh
514*
515* Compute residual RES = B_s - op(A_s) * Y,
516* op(A) = A, A**T, or A**H depending on TRANS (and type).
517*
518 CALL dcopy( n, b( 1, j ), 1, res, 1 )
519 IF ( y_prec_state .EQ. base_residual ) THEN
520 CALL dgbmv( trans, m, n, kl, ku, -1.0d+0, ab, ldab,
521 $ y( 1, j ), 1, 1.0d+0, res, 1 )
522 ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
523 CALL blas_dgbmv_x( trans_type, n, n, kl, ku,
524 $ -1.0d+0, ab, ldab, y( 1, j ), 1, 1.0d+0, res, 1,
525 $ prec_type )
526 ELSE
527 CALL blas_dgbmv2_x( trans_type, n, n, kl, ku, -1.0d+0,
528 $ ab, ldab, y( 1, j ), y_tail, 1, 1.0d+0, res, 1,
529 $ prec_type )
530 END IF
531
532! XXX: RES is no longer needed.
533 CALL dcopy( n, res, 1, dy, 1 )
534 CALL dgbtrs( trans, n, kl, ku, 1, afb, ldafb, ipiv, dy, n,
535 $ info )
536*
537* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
538*
539 normx = 0.0d+0
540 normy = 0.0d+0
541 normdx = 0.0d+0
542 dz_z = 0.0d+0
543 ymin = hugeval
544
545 DO i = 1, n
546 yk = abs( y( i, j ) )
547 dyk = abs( dy( i ) )
548
549 IF ( yk .NE. 0.0d+0 ) THEN
550 dz_z = max( dz_z, dyk / yk )
551 ELSE IF ( dyk .NE. 0.0d+0 ) THEN
552 dz_z = hugeval
553 END IF
554
555 ymin = min( ymin, yk )
556
557 normy = max( normy, yk )
558
559 IF ( colequ ) THEN
560 normx = max( normx, yk * c( i ) )
561 normdx = max( normdx, dyk * c( i ) )
562 ELSE
563 normx = normy
564 normdx = max( normdx, dyk )
565 END IF
566 END DO
567
568 IF ( normx .NE. 0.0d+0 ) THEN
569 dx_x = normdx / normx
570 ELSE IF ( normdx .EQ. 0.0d+0 ) THEN
571 dx_x = 0.0d+0
572 ELSE
573 dx_x = hugeval
574 END IF
575
576 dxrat = normdx / prevnormdx
577 dzrat = dz_z / prev_dz_z
578*
579* Check termination criteria.
580*
581 IF ( .NOT.ignore_cwise
582 $ .AND. ymin*rcond .LT. incr_thresh*normy
583 $ .AND. y_prec_state .LT. extra_y )
584 $ incr_prec = .true.
585
586 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
587 $ x_state = working_state
588 IF ( x_state .EQ. working_state ) THEN
589 IF ( dx_x .LE. eps ) THEN
590 x_state = conv_state
591 ELSE IF ( dxrat .GT. rthresh ) THEN
592 IF ( y_prec_state .NE. extra_y ) THEN
593 incr_prec = .true.
594 ELSE
595 x_state = noprog_state
596 END IF
597 ELSE
598 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
599 END IF
600 IF ( x_state .GT. working_state ) final_dx_x = dx_x
601 END IF
602
603 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
604 $ z_state = working_state
605 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
606 $ z_state = working_state
607 IF ( z_state .EQ. working_state ) THEN
608 IF ( dz_z .LE. eps ) THEN
609 z_state = conv_state
610 ELSE IF ( dz_z .GT. dz_ub ) THEN
611 z_state = unstable_state
612 dzratmax = 0.0d+0
613 final_dz_z = hugeval
614 ELSE IF ( dzrat .GT. rthresh ) THEN
615 IF ( y_prec_state .NE. extra_y ) THEN
616 incr_prec = .true.
617 ELSE
618 z_state = noprog_state
619 END IF
620 ELSE
621 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
622 END IF
623 IF ( z_state .GT. working_state ) final_dz_z = dz_z
624 END IF
625*
626* Exit if both normwise and componentwise stopped working,
627* but if componentwise is unstable, let it go at least two
628* iterations.
629*
630 IF ( x_state.NE.working_state ) THEN
631 IF ( ignore_cwise ) GOTO 666
632 IF ( z_state.EQ.noprog_state .OR. z_state.EQ.conv_state )
633 $ GOTO 666
634 IF ( z_state.EQ.unstable_state .AND. cnt.GT.1 ) GOTO 666
635 END IF
636
637 IF ( incr_prec ) THEN
638 incr_prec = .false.
639 y_prec_state = y_prec_state + 1
640 DO i = 1, n
641 y_tail( i ) = 0.0d+0
642 END DO
643 END IF
644
645 prevnormdx = normdx
646 prev_dz_z = dz_z
647*
648* Update solution.
649*
650 IF (y_prec_state .LT. extra_y) THEN
651 CALL daxpy( n, 1.0d+0, dy, 1, y(1,j), 1 )
652 ELSE
653 CALL dla_wwaddw( n, y(1,j), y_tail, dy )
654 END IF
655
656 END DO
657* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
658 666 CONTINUE
659*
660* Set final_* when cnt hits ithresh.
661*
662 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
663 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
664*
665* Compute error bounds.
666*
667 IF ( n_norms .GE. 1 ) THEN
668 err_bnds_norm( j, la_linrx_err_i ) =
669 $ final_dx_x / (1 - dxratmax)
670 END IF
671 IF (n_norms .GE. 2) THEN
672 err_bnds_comp( j, la_linrx_err_i ) =
673 $ final_dz_z / (1 - dzratmax)
674 END IF
675*
676* Compute componentwise relative backward error from formula
677* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
678* where abs(Z) is the componentwise absolute value of the matrix
679* or vector Z.
680*
681* Compute residual RES = B_s - op(A_s) * Y,
682* op(A) = A, A**T, or A**H depending on TRANS (and type).
683*
684 CALL dcopy( n, b( 1, j ), 1, res, 1 )
685 CALL dgbmv(trans, n, n, kl, ku, -1.0d+0, ab, ldab, y(1,j),
686 $ 1, 1.0d+0, res, 1 )
687
688 DO i = 1, n
689 ayb( i ) = abs( b( i, j ) )
690 END DO
691*
692* Compute abs(op(A_s))*abs(Y) + abs(B_s).
693*
694 CALL dla_gbamv( trans_type, n, n, kl, ku, 1.0d+0,
695 $ ab, ldab, y(1, j), 1, 1.0d+0, ayb, 1 )
696
697 CALL dla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
698*
699* End of loop for each RHS
700*
701 END DO
702*
703 RETURN
704*
705* End of DLA_GBRFSX_EXTENDED
706*
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
DGBMV
Definition dgbmv.f:188
subroutine dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
Definition dgbtrs.f:138
subroutine dla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Definition dla_gbamv.f:187
subroutine dla_lin_berr(n, nz, nrhs, res, ayb, berr)
DLA_LIN_BERR computes a component-wise relative backward error.
character *1 function chla_transtype(trans)
CHLA_TRANSTYPE
subroutine dla_wwaddw(n, x, y, w)
DLA_WWADDW adds a vector into a doubled-single vector.
Definition dla_wwaddw.f:81
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: