LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dla_lin_berr()

subroutine dla_lin_berr ( integer  n,
integer  nz,
integer  nrhs,
double precision, dimension( n, nrhs )  res,
double precision, dimension( n, nrhs )  ayb,
double precision, dimension( nrhs )  berr 
)

DLA_LIN_BERR computes a component-wise relative backward error.

Download DLA_LIN_BERR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    DLA_LIN_BERR computes component-wise relative backward error from
    the formula
        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
    where abs(Z) is the component-wise absolute value of the matrix
    or vector Z.
Parameters
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NZ
          NZ is INTEGER
     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
     guard against spuriously zero residuals. Default value is N.
[in]NRHS
          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices AYB, RES, and BERR.  NRHS >= 0.
[in]RES
          RES is DOUBLE PRECISION array, dimension (N,NRHS)
     The residual matrix, i.e., the matrix R in the relative backward
     error formula above.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
     The denominator in the relative backward error formula above, i.e.,
     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
     are from iterative refinement (see dla_gerfsx_extended.f).
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
     The component-wise relative backward error from the formula above.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 100 of file dla_lin_berr.f.

101*
102* -- LAPACK computational routine --
103* -- LAPACK is a software package provided by Univ. of Tennessee, --
104* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
105*
106* .. Scalar Arguments ..
107 INTEGER N, NZ, NRHS
108* ..
109* .. Array Arguments ..
110 DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
111 DOUBLE PRECISION RES( N, NRHS )
112* ..
113*
114* =====================================================================
115*
116* .. Local Scalars ..
117 DOUBLE PRECISION TMP
118 INTEGER I, J
119* ..
120* .. Intrinsic Functions ..
121 INTRINSIC abs, max
122* ..
123* .. External Functions ..
124 EXTERNAL dlamch
125 DOUBLE PRECISION DLAMCH
126 DOUBLE PRECISION SAFE1
127* ..
128* .. Executable Statements ..
129*
130* Adding SAFE1 to the numerator guards against spuriously zero
131* residuals. A similar safeguard is in the SLA_yyAMV routine used
132* to compute AYB.
133*
134 safe1 = dlamch( 'Safe minimum' )
135 safe1 = (nz+1)*safe1
136
137 DO j = 1, nrhs
138 berr(j) = 0.0d+0
139 DO i = 1, n
140 IF (ayb(i,j) .NE. 0.0d+0) THEN
141 tmp = (safe1+abs(res(i,j)))/ayb(i,j)
142 berr(j) = max( berr(j), tmp )
143 END IF
144*
145* If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know
146* the true residual also must be exactly 0.0.
147*
148 END DO
149 END DO
150*
151* End of DLA_LIN_BERR
152*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: