LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dla_lin_berr()

subroutine dla_lin_berr ( integer n,
integer nz,
integer nrhs,
double precision, dimension( n, nrhs ) res,
double precision, dimension( n, nrhs ) ayb,
double precision, dimension( nrhs ) berr )

DLA_LIN_BERR computes a component-wise relative backward error.

Download DLA_LIN_BERR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    DLA_LIN_BERR computes component-wise relative backward error from
!>    the formula
!>        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
!>    where abs(Z) is the component-wise absolute value of the matrix
!>    or vector Z.
!> 
Parameters
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NZ
!>          NZ is INTEGER
!>     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
!>     guard against spuriously zero residuals. Default value is N.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices AYB, RES, and BERR.  NRHS >= 0.
!> 
[in]RES
!>          RES is DOUBLE PRECISION array, dimension (N,NRHS)
!>     The residual matrix, i.e., the matrix R in the relative backward
!>     error formula above.
!> 
[in]AYB
!>          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
!>     The denominator in the relative backward error formula above, i.e.,
!>     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
!>     are from iterative refinement (see dla_gerfsx_extended.f).
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     The component-wise relative backward error from the formula above.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 98 of file dla_lin_berr.f.

99*
100* -- LAPACK computational routine --
101* -- LAPACK is a software package provided by Univ. of Tennessee, --
102* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
103*
104* .. Scalar Arguments ..
105 INTEGER N, NZ, NRHS
106* ..
107* .. Array Arguments ..
108 DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
109 DOUBLE PRECISION RES( N, NRHS )
110* ..
111*
112* =====================================================================
113*
114* .. Local Scalars ..
115 DOUBLE PRECISION TMP
116 INTEGER I, J
117* ..
118* .. Intrinsic Functions ..
119 INTRINSIC abs, max
120* ..
121* .. External Functions ..
122 EXTERNAL dlamch
123 DOUBLE PRECISION DLAMCH
124 DOUBLE PRECISION SAFE1
125* ..
126* .. Executable Statements ..
127*
128* Adding SAFE1 to the numerator guards against spuriously zero
129* residuals. A similar safeguard is in the SLA_yyAMV routine used
130* to compute AYB.
131*
132 safe1 = dlamch( 'Safe minimum' )
133 safe1 = (nz+1)*safe1
134
135 DO j = 1, nrhs
136 berr(j) = 0.0d+0
137 DO i = 1, n
138 IF (ayb(i,j) .NE. 0.0d+0) THEN
139 tmp = (safe1+abs(res(i,j)))/ayb(i,j)
140 berr(j) = max( berr(j), tmp )
141 END IF
142*
143* If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know
144* the true residual also must be exactly 0.0.
145*
146 END DO
147 END DO
148*
149* End of DLA_LIN_BERR
150*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: