LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cla_gbrfsx_extended()

subroutine cla_gbrfsx_extended ( integer  prec_type,
integer  trans_type,
integer  n,
integer  kl,
integer  ku,
integer  nrhs,
complex, dimension( ldab, * )  ab,
integer  ldab,
complex, dimension( ldafb, * )  afb,
integer  ldafb,
integer, dimension( * )  ipiv,
logical  colequ,
real, dimension( * )  c,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldy, * )  y,
integer  ldy,
real, dimension( * )  berr_out,
integer  n_norms,
real, dimension( nrhs, * )  err_bnds_norm,
real, dimension( nrhs, * )  err_bnds_comp,
complex, dimension( * )  res,
real, dimension(*)  ayb,
complex, dimension( * )  dy,
complex, dimension( * )  y_tail,
real  rcond,
integer  ithresh,
real  rthresh,
real  dz_ub,
logical  ignore_cwise,
integer  info 
)

CLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download CLA_GBRFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLA_GBRFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by CGBRFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]TRANS_TYPE
          TRANS_TYPE is INTEGER
     Specifies the transposition operation on A.
     The value is defined by ILATRANS(T) where T is a CHARACTER and T
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]KL
          KL is INTEGER
     The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
     The number of superdiagonals within the band of A.  KU >= 0
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]AB
          AB is COMPLEX array, dimension (LDAB,N)
     On entry, the N-by-N matrix AB.
[in]LDAB
          LDAB is INTEGER
     The leading dimension of the array AB.  LDAB >= max(1,N).
[in]AFB
          AFB is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGBTRF.
[in]LDAFB
          LDAFB is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGBTRF; row i of the matrix was interchanged
     with row IPIV(i).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is REAL array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by CGBTRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is REAL array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by CLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is REAL array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is REAL
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is REAL
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to CGBTRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 403 of file cla_gbrfsx_extended.f.

410*
411* -- LAPACK computational routine --
412* -- LAPACK is a software package provided by Univ. of Tennessee, --
413* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
414*
415* .. Scalar Arguments ..
416 INTEGER INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
417 $ PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
418 LOGICAL COLEQU, IGNORE_CWISE
419 REAL RTHRESH, DZ_UB
420* ..
421* .. Array Arguments ..
422 INTEGER IPIV( * )
423 COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
424 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
425 REAL C( * ), AYB(*), RCOND, BERR_OUT( * ),
426 $ ERR_BNDS_NORM( NRHS, * ),
427 $ ERR_BNDS_COMP( NRHS, * )
428* ..
429*
430* =====================================================================
431*
432* .. Local Scalars ..
433 CHARACTER TRANS
434 INTEGER CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
435 REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
436 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
437 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
438 $ EPS, HUGEVAL, INCR_THRESH
439 LOGICAL INCR_PREC
440 COMPLEX ZDUM
441* ..
442* .. Parameters ..
443 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
444 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
445 $ EXTRA_Y
446 parameter( unstable_state = 0, working_state = 1,
447 $ conv_state = 2, noprog_state = 3 )
448 parameter( base_residual = 0, extra_residual = 1,
449 $ extra_y = 2 )
450 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
451 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
452 INTEGER CMP_ERR_I, PIV_GROWTH_I
453 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
454 $ berr_i = 3 )
455 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
456 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
457 $ piv_growth_i = 9 )
458 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
459 $ LA_LINRX_CWISE_I
460 parameter( la_linrx_itref_i = 1,
461 $ la_linrx_ithresh_i = 2 )
462 parameter( la_linrx_cwise_i = 3 )
463 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
464 $ LA_LINRX_RCOND_I
465 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
466 parameter( la_linrx_rcond_i = 3 )
467* ..
468* .. External Subroutines ..
469 EXTERNAL caxpy, ccopy, cgbtrs, cgbmv, blas_cgbmv_x,
470 $ blas_cgbmv2_x, cla_gbamv, cla_wwaddw, slamch,
472 REAL SLAMCH
473 CHARACTER CHLA_TRANSTYPE
474* ..
475* .. Intrinsic Functions..
476 INTRINSIC abs, max, min
477* ..
478* .. Statement Functions ..
479 REAL CABS1
480* ..
481* .. Statement Function Definitions ..
482 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
483* ..
484* .. Executable Statements ..
485*
486 IF (info.NE.0) RETURN
487 trans = chla_transtype(trans_type)
488 eps = slamch( 'Epsilon' )
489 hugeval = slamch( 'Overflow' )
490* Force HUGEVAL to Inf
491 hugeval = hugeval * hugeval
492* Using HUGEVAL may lead to spurious underflows.
493 incr_thresh = real( n ) * eps
494 m = kl+ku+1
495
496 DO j = 1, nrhs
497 y_prec_state = extra_residual
498 IF ( y_prec_state .EQ. extra_y ) then
499 DO i = 1, n
500 y_tail( i ) = 0.0
501 END DO
502 END IF
503
504 dxrat = 0.0e+0
505 dxratmax = 0.0e+0
506 dzrat = 0.0e+0
507 dzratmax = 0.0e+0
508 final_dx_x = hugeval
509 final_dz_z = hugeval
510 prevnormdx = hugeval
511 prev_dz_z = hugeval
512 dz_z = hugeval
513 dx_x = hugeval
514
515 x_state = working_state
516 z_state = unstable_state
517 incr_prec = .false.
518
519 DO cnt = 1, ithresh
520*
521* Compute residual RES = B_s - op(A_s) * Y,
522* op(A) = A, A**T, or A**H depending on TRANS (and type).
523*
524 CALL ccopy( n, b( 1, j ), 1, res, 1 )
525 IF ( y_prec_state .EQ. base_residual ) THEN
526 CALL cgbmv( trans, m, n, kl, ku, (-1.0e+0,0.0e+0), ab,
527 $ ldab, y( 1, j ), 1, (1.0e+0,0.0e+0), res, 1 )
528 ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
529 CALL blas_cgbmv_x( trans_type, n, n, kl, ku,
530 $ (-1.0e+0,0.0e+0), ab, ldab, y( 1, j ), 1,
531 $ (1.0e+0,0.0e+0), res, 1, prec_type )
532 ELSE
533 CALL blas_cgbmv2_x( trans_type, n, n, kl, ku,
534 $ (-1.0e+0,0.0e+0), ab, ldab, y( 1, j ), y_tail, 1,
535 $ (1.0e+0,0.0e+0), res, 1, prec_type )
536 END IF
537
538! XXX: RES is no longer needed.
539 CALL ccopy( n, res, 1, dy, 1 )
540 CALL cgbtrs( trans, n, kl, ku, 1, afb, ldafb, ipiv, dy, n,
541 $ info )
542*
543* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
544*
545 normx = 0.0e+0
546 normy = 0.0e+0
547 normdx = 0.0e+0
548 dz_z = 0.0e+0
549 ymin = hugeval
550
551 DO i = 1, n
552 yk = cabs1( y( i, j ) )
553 dyk = cabs1( dy( i ) )
554
555 IF (yk .NE. 0.0) THEN
556 dz_z = max( dz_z, dyk / yk )
557 ELSE IF ( dyk .NE. 0.0 ) THEN
558 dz_z = hugeval
559 END IF
560
561 ymin = min( ymin, yk )
562
563 normy = max( normy, yk )
564
565 IF ( colequ ) THEN
566 normx = max( normx, yk * c( i ) )
567 normdx = max(normdx, dyk * c(i))
568 ELSE
569 normx = normy
570 normdx = max( normdx, dyk )
571 END IF
572 END DO
573
574 IF ( normx .NE. 0.0 ) THEN
575 dx_x = normdx / normx
576 ELSE IF ( normdx .EQ. 0.0 ) THEN
577 dx_x = 0.0
578 ELSE
579 dx_x = hugeval
580 END IF
581
582 dxrat = normdx / prevnormdx
583 dzrat = dz_z / prev_dz_z
584*
585* Check termination criteria.
586*
587 IF (.NOT.ignore_cwise
588 $ .AND. ymin*rcond .LT. incr_thresh*normy
589 $ .AND. y_prec_state .LT. extra_y )
590 $ incr_prec = .true.
591
592 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
593 $ x_state = working_state
594 IF ( x_state .EQ. working_state ) THEN
595 IF ( dx_x .LE. eps ) THEN
596 x_state = conv_state
597 ELSE IF ( dxrat .GT. rthresh ) THEN
598 IF ( y_prec_state .NE. extra_y ) THEN
599 incr_prec = .true.
600 ELSE
601 x_state = noprog_state
602 END IF
603 ELSE
604 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
605 END IF
606 IF ( x_state .GT. working_state ) final_dx_x = dx_x
607 END IF
608
609 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
610 $ z_state = working_state
611 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
612 $ z_state = working_state
613 IF ( z_state .EQ. working_state ) THEN
614 IF ( dz_z .LE. eps ) THEN
615 z_state = conv_state
616 ELSE IF ( dz_z .GT. dz_ub ) THEN
617 z_state = unstable_state
618 dzratmax = 0.0
619 final_dz_z = hugeval
620 ELSE IF ( dzrat .GT. rthresh ) THEN
621 IF ( y_prec_state .NE. extra_y ) THEN
622 incr_prec = .true.
623 ELSE
624 z_state = noprog_state
625 END IF
626 ELSE
627 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
628 END IF
629 IF ( z_state .GT. working_state ) final_dz_z = dz_z
630 END IF
631*
632* Exit if both normwise and componentwise stopped working,
633* but if componentwise is unstable, let it go at least two
634* iterations.
635*
636 IF ( x_state.NE.working_state ) THEN
637 IF ( ignore_cwise ) GOTO 666
638 IF ( z_state.EQ.noprog_state .OR. z_state.EQ.conv_state )
639 $ GOTO 666
640 IF ( z_state.EQ.unstable_state .AND. cnt.GT.1 ) GOTO 666
641 END IF
642
643 IF ( incr_prec ) THEN
644 incr_prec = .false.
645 y_prec_state = y_prec_state + 1
646 DO i = 1, n
647 y_tail( i ) = 0.0
648 END DO
649 END IF
650
651 prevnormdx = normdx
652 prev_dz_z = dz_z
653*
654* Update solution.
655*
656 IF ( y_prec_state .LT. extra_y ) THEN
657 CALL caxpy( n, (1.0e+0,0.0e+0), dy, 1, y(1,j), 1 )
658 ELSE
659 CALL cla_wwaddw( n, y(1,j), y_tail, dy )
660 END IF
661
662 END DO
663* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
664 666 CONTINUE
665*
666* Set final_* when cnt hits ithresh.
667*
668 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
669 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
670*
671* Compute error bounds.
672*
673 IF ( n_norms .GE. 1 ) THEN
674 err_bnds_norm( j, la_linrx_err_i ) =
675 $ final_dx_x / (1 - dxratmax)
676 END IF
677 IF ( n_norms .GE. 2 ) THEN
678 err_bnds_comp( j, la_linrx_err_i ) =
679 $ final_dz_z / (1 - dzratmax)
680 END IF
681*
682* Compute componentwise relative backward error from formula
683* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
684* where abs(Z) is the componentwise absolute value of the matrix
685* or vector Z.
686*
687* Compute residual RES = B_s - op(A_s) * Y,
688* op(A) = A, A**T, or A**H depending on TRANS (and type).
689*
690 CALL ccopy( n, b( 1, j ), 1, res, 1 )
691 CALL cgbmv( trans, n, n, kl, ku, (-1.0e+0,0.0e+0), ab, ldab,
692 $ y(1,j), 1, (1.0e+0,0.0e+0), res, 1 )
693
694 DO i = 1, n
695 ayb( i ) = cabs1( b( i, j ) )
696 END DO
697*
698* Compute abs(op(A_s))*abs(Y) + abs(B_s).
699*
700 CALL cla_gbamv( trans_type, n, n, kl, ku, 1.0e+0,
701 $ ab, ldab, y(1, j), 1, 1.0e+0, ayb, 1 )
702
703 CALL cla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
704*
705* End of loop for each RHS.
706*
707 END DO
708*
709 RETURN
710*
711* End of CLA_GBRFSX_EXTENDED
712*
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
CGBMV
Definition cgbmv.f:190
subroutine cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
Definition cgbtrs.f:138
subroutine cla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Definition cla_gbamv.f:188
subroutine cla_lin_berr(n, nz, nrhs, res, ayb, berr)
CLA_LIN_BERR computes a component-wise relative backward error.
character *1 function chla_transtype(trans)
CHLA_TRANSTYPE
subroutine cla_wwaddw(n, x, y, w)
CLA_WWADDW adds a vector into a doubled-single vector.
Definition cla_wwaddw.f:81
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: