LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgelq2.f
Go to the documentation of this file.
1*> \brief \b ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGELQ2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelq2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelq2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelq2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LDA, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
37*>
38*> A = ( L 0 ) * Q
39*>
40*> where:
41*>
42*> Q is a n-by-n orthogonal matrix;
43*> L is a lower-triangular m-by-m matrix;
44*> 0 is a m-by-(n-m) zero matrix, if m < n.
45*>
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] M
52*> \verbatim
53*> M is INTEGER
54*> The number of rows of the matrix A. M >= 0.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of columns of the matrix A. N >= 0.
61*> \endverbatim
62*>
63*> \param[in,out] A
64*> \verbatim
65*> A is COMPLEX*16 array, dimension (LDA,N)
66*> On entry, the m by n matrix A.
67*> On exit, the elements on and below the diagonal of the array
68*> contain the m by min(m,n) lower trapezoidal matrix L (L is
69*> lower triangular if m <= n); the elements above the diagonal,
70*> with the array TAU, represent the unitary matrix Q as a
71*> product of elementary reflectors (see Further Details).
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of the array A. LDA >= max(1,M).
78*> \endverbatim
79*>
80*> \param[out] TAU
81*> \verbatim
82*> TAU is COMPLEX*16 array, dimension (min(M,N))
83*> The scalar factors of the elementary reflectors (see Further
84*> Details).
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is COMPLEX*16 array, dimension (M)
90*> \endverbatim
91*>
92*> \param[out] INFO
93*> \verbatim
94*> INFO is INTEGER
95*> = 0: successful exit
96*> < 0: if INFO = -i, the i-th argument had an illegal value
97*> \endverbatim
98*
99* Authors:
100* ========
101*
102*> \author Univ. of Tennessee
103*> \author Univ. of California Berkeley
104*> \author Univ. of Colorado Denver
105*> \author NAG Ltd.
106*
107*> \ingroup gelq2
108*
109*> \par Further Details:
110* =====================
111*>
112*> \verbatim
113*>
114*> The matrix Q is represented as a product of elementary reflectors
115*>
116*> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
117*>
118*> Each H(i) has the form
119*>
120*> H(i) = I - tau * v * v**H
121*>
122*> where tau is a complex scalar, and v is a complex vector with
123*> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
124*> A(i,i+1:n), and tau in TAU(i).
125*> \endverbatim
126*>
127* =====================================================================
128 SUBROUTINE zgelq2( M, N, A, LDA, TAU, WORK, INFO )
129*
130* -- LAPACK computational routine --
131* -- LAPACK is a software package provided by Univ. of Tennessee, --
132* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
133*
134* .. Scalar Arguments ..
135 INTEGER INFO, LDA, M, N
136* ..
137* .. Array Arguments ..
138 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
139* ..
140*
141* =====================================================================
142*
143* .. Parameters ..
144 COMPLEX*16 ONE
145 parameter( one = ( 1.0d+0, 0.0d+0 ) )
146* ..
147* .. Local Scalars ..
148 INTEGER I, K
149 COMPLEX*16 ALPHA
150* ..
151* .. External Subroutines ..
152 EXTERNAL xerbla, zlacgv, zlarf, zlarfg
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC max, min
156* ..
157* .. Executable Statements ..
158*
159* Test the input arguments
160*
161 info = 0
162 IF( m.LT.0 ) THEN
163 info = -1
164 ELSE IF( n.LT.0 ) THEN
165 info = -2
166 ELSE IF( lda.LT.max( 1, m ) ) THEN
167 info = -4
168 END IF
169 IF( info.NE.0 ) THEN
170 CALL xerbla( 'ZGELQ2', -info )
171 RETURN
172 END IF
173*
174 k = min( m, n )
175*
176 DO 10 i = 1, k
177*
178* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
179*
180 CALL zlacgv( n-i+1, a( i, i ), lda )
181 alpha = a( i, i )
182 CALL zlarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
183 $ tau( i ) )
184 IF( i.LT.m ) THEN
185*
186* Apply H(i) to A(i+1:m,i:n) from the right
187*
188 a( i, i ) = one
189 CALL zlarf( 'Right', m-i, n-i+1, a( i, i ), lda, tau( i ),
190 $ a( i+1, i ), lda, work )
191 END IF
192 a( i, i ) = alpha
193 CALL zlacgv( n-i+1, a( i, i ), lda )
194 10 CONTINUE
195 RETURN
196*
197* End of ZGELQ2
198*
199 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgelq2(m, n, a, lda, tau, work, info)
ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition zgelq2.f:129
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:74
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition zlarf.f:128
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:106