LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zgelq2 | ( | integer | m, |
integer | n, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( * ) | tau, | ||
complex*16, dimension( * ) | work, | ||
integer | info ) |
ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Download ZGELQ2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A: !> !> A = ( L 0 ) * Q !> !> where: !> !> Q is a n-by-n orthogonal matrix; !> L is a lower-triangular m-by-m matrix; !> 0 is a m-by-(n-m) zero matrix, if m < n. !> !>
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
[in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the m by min(m,n) lower trapezoidal matrix L (L is !> lower triangular if m <= n); the elements above the diagonal, !> with the array TAU, represent the unitary matrix Q as a !> product of elementary reflectors (see Further Details). !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[out] | TAU | !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in !> A(i,i+1:n), and tau in TAU(i). !>
Definition at line 126 of file zgelq2.f.