LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgelq2()

subroutine zgelq2 ( integer m,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( * ) work,
integer info )

ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Download ZGELQ2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a n-by-n orthogonal matrix;
!>    L is a lower-triangular m-by-m matrix;
!>    0 is a m-by-(n-m) zero matrix, if m < n.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m by min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
!>  A(i,i+1:n), and tau in TAU(i).
!> 

Definition at line 126 of file zgelq2.f.

127*
128* -- LAPACK computational routine --
129* -- LAPACK is a software package provided by Univ. of Tennessee, --
130* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131*
132* .. Scalar Arguments ..
133 INTEGER INFO, LDA, M, N
134* ..
135* .. Array Arguments ..
136 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
137* ..
138*
139* =====================================================================
140*
141* .. Parameters ..
142 COMPLEX*16 ONE
143 parameter( one = ( 1.0d+0, 0.0d+0 ) )
144* ..
145* .. Local Scalars ..
146 INTEGER I, K
147* ..
148* .. External Subroutines ..
149 EXTERNAL xerbla, zlacgv, zlarf1f, zlarfg
150* ..
151* .. Intrinsic Functions ..
152 INTRINSIC max, min
153* ..
154* .. Executable Statements ..
155*
156* Test the input arguments
157*
158 info = 0
159 IF( m.LT.0 ) THEN
160 info = -1
161 ELSE IF( n.LT.0 ) THEN
162 info = -2
163 ELSE IF( lda.LT.max( 1, m ) ) THEN
164 info = -4
165 END IF
166 IF( info.NE.0 ) THEN
167 CALL xerbla( 'ZGELQ2', -info )
168 RETURN
169 END IF
170*
171 k = min( m, n )
172*
173 DO 10 i = 1, k
174*
175* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
176*
177 CALL zlacgv( n-i+1, a( i, i ), lda )
178 CALL zlarfg( n-i+1, a( i, i ), a( i, min( i+1, n ) ), lda,
179 $ tau( i ) )
180 IF( i.LT.m ) THEN
181*
182* Apply H(i) to A(i+1:m,i:n) from the right
183*
184 CALL zlarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
185 $ tau( i ),
186 $ a( i+1, i ), lda, work )
187 END IF
188 CALL zlacgv( n-i+1, a( i, i ), lda )
189 10 CONTINUE
190 RETURN
191*
192* End of ZGELQ2
193*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: