LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgelq.f
Go to the documentation of this file.
1*> \brief \b CGELQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
7* INFO )
8*
9* .. Scalar Arguments ..
10* INTEGER INFO, LDA, M, N, TSIZE, LWORK
11* ..
12* .. Array Arguments ..
13* COMPLEX A( LDA, * ), T( * ), WORK( * )
14* ..
15*
16*
17*> \par Purpose:
18* =============
19*>
20*> \verbatim
21*>
22*> CGELQ computes an LQ factorization of a complex M-by-N matrix A:
23*>
24*> A = ( L 0 ) * Q
25*>
26*> where:
27*>
28*> Q is a N-by-N orthogonal matrix;
29*> L is a lower-triangular M-by-M matrix;
30*> 0 is a M-by-(N-M) zero matrix, if M < N.
31*>
32*> \endverbatim
33*
34* Arguments:
35* ==========
36*
37*> \param[in] M
38*> \verbatim
39*> M is INTEGER
40*> The number of rows of the matrix A. M >= 0.
41*> \endverbatim
42*>
43*> \param[in] N
44*> \verbatim
45*> N is INTEGER
46*> The number of columns of the matrix A. N >= 0.
47*> \endverbatim
48*>
49*> \param[in,out] A
50*> \verbatim
51*> A is COMPLEX array, dimension (LDA,N)
52*> On entry, the M-by-N matrix A.
53*> On exit, the elements on and below the diagonal of the array
54*> contain the M-by-min(M,N) lower trapezoidal matrix L
55*> (L is lower triangular if M <= N);
56*> the elements above the diagonal are used to store part of the
57*> data structure to represent Q.
58*> \endverbatim
59*>
60*> \param[in] LDA
61*> \verbatim
62*> LDA is INTEGER
63*> The leading dimension of the array A. LDA >= max(1,M).
64*> \endverbatim
65*>
66*> \param[out] T
67*> \verbatim
68*> T is COMPLEX array, dimension (MAX(5,TSIZE))
69*> On exit, if INFO = 0, T(1) returns optimal (or either minimal
70*> or optimal, if query is assumed) TSIZE. See TSIZE for details.
71*> Remaining T contains part of the data structure used to represent Q.
72*> If one wants to apply or construct Q, then one needs to keep T
73*> (in addition to A) and pass it to further subroutines.
74*> \endverbatim
75*>
76*> \param[in] TSIZE
77*> \verbatim
78*> TSIZE is INTEGER
79*> If TSIZE >= 5, the dimension of the array T.
80*> If TSIZE = -1 or -2, then a workspace query is assumed. The routine
81*> only calculates the sizes of the T and WORK arrays, returns these
82*> values as the first entries of the T and WORK arrays, and no error
83*> message related to T or WORK is issued by XERBLA.
84*> If TSIZE = -1, the routine calculates optimal size of T for the
85*> optimum performance and returns this value in T(1).
86*> If TSIZE = -2, the routine calculates minimal size of T and
87*> returns this value in T(1).
88*> \endverbatim
89*>
90*> \param[out] WORK
91*> \verbatim
92*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
93*> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
94*> or optimal, if query was assumed) LWORK.
95*> See LWORK for details.
96*> \endverbatim
97*>
98*> \param[in] LWORK
99*> \verbatim
100*> LWORK is INTEGER
101*> The dimension of the array WORK. LWORK >= 1.
102*> If LWORK = -1 or -2, then a workspace query is assumed. The routine
103*> only calculates the sizes of the T and WORK arrays, returns these
104*> values as the first entries of the T and WORK arrays, and no error
105*> message related to T or WORK is issued by XERBLA.
106*> If LWORK = -1, the routine calculates optimal size of WORK for the
107*> optimal performance and returns this value in WORK(1).
108*> If LWORK = -2, the routine calculates minimal size of WORK and
109*> returns this value in WORK(1).
110*> \endverbatim
111*>
112*> \param[out] INFO
113*> \verbatim
114*> INFO is INTEGER
115*> = 0: successful exit
116*> < 0: if INFO = -i, the i-th argument had an illegal value
117*> \endverbatim
118*
119* Authors:
120* ========
121*
122*> \author Univ. of Tennessee
123*> \author Univ. of California Berkeley
124*> \author Univ. of Colorado Denver
125*> \author NAG Ltd.
126*
127*> \par Further Details
128* ====================
129*>
130*> \verbatim
131*>
132*> The goal of the interface is to give maximum freedom to the developers for
133*> creating any LQ factorization algorithm they wish. The triangular
134*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
135*> and the array T can be used to store any relevant information for applying or
136*> constructing the Q factor. The WORK array can safely be discarded after exit.
137*>
138*> Caution: One should not expect the sizes of T and WORK to be the same from one
139*> LAPACK implementation to the other, or even from one execution to the other.
140*> A workspace query (for T and WORK) is needed at each execution. However,
141*> for a given execution, the size of T and WORK are fixed and will not change
142*> from one query to the next.
143*>
144*> \endverbatim
145*>
146*> \par Further Details particular to this LAPACK implementation:
147* ==============================================================
148*>
149*> \verbatim
150*>
151*> These details are particular for this LAPACK implementation. Users should not
152*> take them for granted. These details may change in the future, and are not likely
153*> true for another LAPACK implementation. These details are relevant if one wants
154*> to try to understand the code. They are not part of the interface.
155*>
156*> In this version,
157*>
158*> T(2): row block size (MB)
159*> T(3): column block size (NB)
160*> T(6:TSIZE): data structure needed for Q, computed by
161*> CLASWLQ or CGELQT
162*>
163*> Depending on the matrix dimensions M and N, and row and column
164*> block sizes MB and NB returned by ILAENV, CGELQ will use either
165*> CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute
166*> the LQ factorization.
167*> \endverbatim
168*>
169*> \ingroup gelq
170*>
171* =====================================================================
172 SUBROUTINE cgelq( M, N, A, LDA, T, TSIZE, WORK, LWORK,
173 $ INFO )
174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
178*
179* .. Scalar Arguments ..
180 INTEGER INFO, LDA, M, N, TSIZE, LWORK
181* ..
182* .. Array Arguments ..
183 COMPLEX A( LDA, * ), T( * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 LOGICAL LQUERY, LMINWS, MINT, MINW
191 INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWOPT, LWREQ
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 REAL SROUNDUP_LWORK
196 EXTERNAL lsame, sroundup_lwork
197* ..
198* .. External Subroutines ..
199 EXTERNAL cgelqt, claswlq, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC max, min, mod
203* ..
204* .. External Functions ..
205 INTEGER ILAENV
206 EXTERNAL ilaenv
207* ..
208* .. Executable Statements ..
209*
210* Test the input arguments
211*
212 info = 0
213*
214 lquery = ( tsize.EQ.-1 .OR. tsize.EQ.-2 .OR.
215 $ lwork.EQ.-1 .OR. lwork.EQ.-2 )
216*
217 mint = .false.
218 minw = .false.
219 IF( tsize.EQ.-2 .OR. lwork.EQ.-2 ) THEN
220 IF( tsize.NE.-1 ) mint = .true.
221 IF( lwork.NE.-1 ) minw = .true.
222 END IF
223*
224* Determine the block size
225*
226 IF( min( m, n ).GT.0 ) THEN
227 mb = ilaenv( 1, 'CGELQ ', ' ', m, n, 1, -1 )
228 nb = ilaenv( 1, 'CGELQ ', ' ', m, n, 2, -1 )
229 ELSE
230 mb = 1
231 nb = n
232 END IF
233 IF( mb.GT.min( m, n ) .OR. mb.LT.1 ) mb = 1
234 IF( nb.GT.n .OR. nb.LE.m ) nb = n
235 mintsz = m + 5
236 IF( nb.GT.m .AND. n.GT.m ) THEN
237 IF( mod( n - m, nb - m ).EQ.0 ) THEN
238 nblcks = ( n - m ) / ( nb - m )
239 ELSE
240 nblcks = ( n - m ) / ( nb - m ) + 1
241 END IF
242 ELSE
243 nblcks = 1
244 END IF
245*
246* Determine if the workspace size satisfies minimal size
247*
248 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
249 lwmin = max( 1, n )
250 lwopt = max( 1, mb*n )
251 ELSE
252 lwmin = max( 1, m )
253 lwopt = max( 1, mb*m )
254 END IF
255 lminws = .false.
256 IF( ( tsize.LT.max( 1, mb*m*nblcks + 5 ) .OR. lwork.LT.lwopt )
257 $ .AND. ( lwork.GE.lwmin ) .AND. ( tsize.GE.mintsz )
258 $ .AND. ( .NOT.lquery ) ) THEN
259 IF( tsize.LT.max( 1, mb*m*nblcks + 5 ) ) THEN
260 lminws = .true.
261 mb = 1
262 nb = n
263 END IF
264 IF( lwork.LT.lwopt ) THEN
265 lminws = .true.
266 mb = 1
267 END IF
268 END IF
269 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
270 lwreq = max( 1, mb*n )
271 ELSE
272 lwreq = max( 1, mb*m )
273 END IF
274*
275 IF( m.LT.0 ) THEN
276 info = -1
277 ELSE IF( n.LT.0 ) THEN
278 info = -2
279 ELSE IF( lda.LT.max( 1, m ) ) THEN
280 info = -4
281 ELSE IF( tsize.LT.max( 1, mb*m*nblcks + 5 )
282 $ .AND. ( .NOT.lquery ) .AND. ( .NOT.lminws ) ) THEN
283 info = -6
284 ELSE IF( ( lwork.LT.lwreq ) .and .( .NOT.lquery )
285 $ .AND. ( .NOT.lminws ) ) THEN
286 info = -8
287 END IF
288*
289 IF( info.EQ.0 ) THEN
290 IF( mint ) THEN
291 t( 1 ) = cmplx( mintsz )
292 ELSE
293 t( 1 ) = cmplx( mb*m*nblcks + 5 )
294 END IF
295 t( 2 ) = cmplx( mb )
296 t( 3 ) = cmplx( nb )
297 IF( minw ) THEN
298 work( 1 ) = sroundup_lwork( lwmin )
299 ELSE
300 work( 1 ) = sroundup_lwork( lwreq )
301 END IF
302 END IF
303 IF( info.NE.0 ) THEN
304 CALL xerbla( 'CGELQ', -info )
305 RETURN
306 ELSE IF( lquery ) THEN
307 RETURN
308 END IF
309*
310* Quick return if possible
311*
312 IF( min( m, n ).EQ.0 ) THEN
313 RETURN
314 END IF
315*
316* The LQ Decomposition
317*
318 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
319 CALL cgelqt( m, n, mb, a, lda, t( 6 ), mb, work, info )
320 ELSE
321 CALL claswlq( m, n, mb, nb, a, lda, t( 6 ), mb, work,
322 $ lwork, info )
323 END IF
324*
325 work( 1 ) = sroundup_lwork( lwreq )
326*
327 RETURN
328*
329* End of CGELQ
330*
331 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgelq(m, n, a, lda, t, tsize, work, lwork, info)
CGELQ
Definition cgelq.f:174
subroutine cgelqt(m, n, mb, a, lda, t, ldt, work, info)
CGELQT
Definition cgelqt.f:124
subroutine claswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
CLASWLQ
Definition claswlq.f:169