LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ chesv_rk()

subroutine chesv_rk ( character uplo,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) e,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( * ) work,
integer lwork,
integer info )

CHESV_RK computes the solution to system of linear equations A * X = B for SY matrices

Download CHESV_RK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> CHESV_RK computes the solution to a complex system of linear !> equations A * X = B, where A is an N-by-N Hermitian matrix !> and X and B are N-by-NRHS matrices. !> !> The bounded Bunch-Kaufman (rook) diagonal pivoting method is used !> to factor A as !> A = P*U*D*(U**H)*(P**T), if UPLO = 'U', or !> A = P*L*D*(L**H)*(P**T), if UPLO = 'L', !> where U (or L) is unit upper (or lower) triangular matrix, !> U**H (or L**H) is the conjugate of U (or L), P is a permutation !> matrix, P**T is the transpose of P, and D is Hermitian and block !> diagonal with 1-by-1 and 2-by-2 diagonal blocks. !> !> CHETRF_RK is called to compute the factorization of a complex !> Hermitian matrix. The factored form of A is then used to solve !> the system of equations A * X = B by calling BLAS3 routine CHETRS_3. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
[in]N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
[in,out]A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the Hermitian matrix A. !> If UPLO = 'U': the leading N-by-N upper triangular part !> of A contains the upper triangular part of the matrix A, !> and the strictly lower triangular part of A is not !> referenced. !> !> If UPLO = 'L': the leading N-by-N lower triangular part !> of A contains the lower triangular part of the matrix A, !> and the strictly upper triangular part of A is not !> referenced. !> !> On exit, if INFO = 0, diagonal of the block diagonal !> matrix D and factors U or L as computed by CHETRF_RK: !> a) ONLY diagonal elements of the Hermitian block diagonal !> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); !> (superdiagonal (or subdiagonal) elements of D !> are stored on exit in array E), and !> b) If UPLO = 'U': factor U in the superdiagonal part of A. !> If UPLO = 'L': factor L in the subdiagonal part of A. !> !> For more info see the description of CHETRF_RK routine. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[out]E
!> E is COMPLEX array, dimension (N) !> On exit, contains the output computed by the factorization !> routine CHETRF_RK, i.e. the superdiagonal (or subdiagonal) !> elements of the Hermitian block diagonal matrix D !> with 1-by-1 or 2-by-2 diagonal blocks, where !> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; !> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. !> !> NOTE: For 1-by-1 diagonal block D(k), where !> 1 <= k <= N, the element E(k) is set to 0 in both !> UPLO = 'U' or UPLO = 'L' cases. !> !> For more info see the description of CHETRF_RK routine. !>
[out]IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, !> as determined by CHETRF_RK. !> !> For more info see the description of CHETRF_RK routine. !>
[in,out]B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]WORK
!> WORK is COMPLEX array, dimension ( MAX(1,LWORK) ). !> Work array used in the factorization stage. !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1. For best performance !> of factorization stage LWORK >= max(1,N*NB), where NB is !> the optimal blocksize for CHETRF_RK. !> !> If LWORK = -1, then a workspace query is assumed; !> the routine only calculates the optimal size of the WORK !> array for factorization stage, returns this value as !> the first entry of the WORK array, and no error message !> related to LWORK is issued by XERBLA. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> !> < 0: If INFO = -k, the k-th argument had an illegal value !> !> > 0: If INFO = k, the matrix A is singular, because: !> If UPLO = 'U': column k in the upper !> triangular part of A contains all zeros. !> If UPLO = 'L': column k in the lower !> triangular part of A contains all zeros. !> !> Therefore D(k,k) is exactly zero, and superdiagonal !> elements of column k of U (or subdiagonal elements of !> column k of L ) are all zeros. The factorization has !> been completed, but the block diagonal matrix D is !> exactly singular, and division by zero will occur if !> it is used to solve a system of equations. !> !> NOTE: INFO only stores the first occurrence of !> a singularity, any subsequent occurrence of singularity !> is not stored in INFO even though the factorization !> always completes. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> December 2016, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>

Definition at line 224 of file chesv_rk.f.

227*
228* -- LAPACK driver routine --
229* -- LAPACK is a software package provided by Univ. of Tennessee, --
230* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
231*
232* .. Scalar Arguments ..
233 CHARACTER UPLO
234 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
235* ..
236* .. Array Arguments ..
237 INTEGER IPIV( * )
238 COMPLEX A( LDA, * ), B( LDB, * ), E( * ), WORK( * )
239* ..
240*
241* =====================================================================
242*
243* .. Local Scalars ..
244 LOGICAL LQUERY
245 INTEGER LWKOPT
246* ..
247* .. External Functions ..
248 LOGICAL LSAME
249 REAL SROUNDUP_LWORK
250 EXTERNAL lsame, sroundup_lwork
251* ..
252* .. External Subroutines ..
253 EXTERNAL xerbla, chetrf_rk, chetrs_3
254* ..
255* .. Intrinsic Functions ..
256 INTRINSIC max
257* ..
258* .. Executable Statements ..
259*
260* Test the input parameters.
261*
262 info = 0
263 lquery = ( lwork.EQ.-1 )
264 IF( .NOT.lsame( uplo, 'U' ) .AND.
265 $ .NOT.lsame( uplo, 'L' ) ) THEN
266 info = -1
267 ELSE IF( n.LT.0 ) THEN
268 info = -2
269 ELSE IF( nrhs.LT.0 ) THEN
270 info = -3
271 ELSE IF( lda.LT.max( 1, n ) ) THEN
272 info = -5
273 ELSE IF( ldb.LT.max( 1, n ) ) THEN
274 info = -9
275 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
276 info = -11
277 END IF
278*
279 IF( info.EQ.0 ) THEN
280 IF( n.EQ.0 ) THEN
281 lwkopt = 1
282 ELSE
283 CALL chetrf_rk( uplo, n, a, lda, e, ipiv, work, -1,
284 $ info )
285 lwkopt = int( work( 1 ) )
286 END IF
287 work( 1 ) = sroundup_lwork(lwkopt)
288 END IF
289*
290 IF( info.NE.0 ) THEN
291 CALL xerbla( 'CHESV_RK ', -info )
292 RETURN
293 ELSE IF( lquery ) THEN
294 RETURN
295 END IF
296*
297* Compute the factorization A = U*D*U**T or A = L*D*L**T.
298*
299 CALL chetrf_rk( uplo, n, a, lda, e, ipiv, work, lwork, info )
300*
301 IF( info.EQ.0 ) THEN
302*
303* Solve the system A*X = B with BLAS3 solver, overwriting B with X.
304*
305 CALL chetrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,
306 $ info )
307*
308 END IF
309*
310 work( 1 ) = sroundup_lwork(lwkopt)
311*
312 RETURN
313*
314* End of CHESV_RK
315*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetrf_rk.f:257
subroutine chetrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
CHETRS_3
Definition chetrs_3.f:163
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: