LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctrsen()

subroutine ctrsen ( character job,
character compq,
logical, dimension( * ) select,
integer n,
complex, dimension( ldt, * ) t,
integer ldt,
complex, dimension( ldq, * ) q,
integer ldq,
complex, dimension( * ) w,
integer m,
real s,
real sep,
complex, dimension( * ) work,
integer lwork,
integer info )

CTRSEN

Download CTRSEN + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CTRSEN reorders the Schur factorization of a complex matrix
!> A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in
!> the leading positions on the diagonal of the upper triangular matrix
!> T, and the leading columns of Q form an orthonormal basis of the
!> corresponding right invariant subspace.
!>
!> Optionally the routine computes the reciprocal condition numbers of
!> the cluster of eigenvalues and/or the invariant subspace.
!> 
Parameters
[in]JOB
!>          JOB is CHARACTER*1
!>          Specifies whether condition numbers are required for the
!>          cluster of eigenvalues (S) or the invariant subspace (SEP):
!>          = 'N': none;
!>          = 'E': for eigenvalues only (S);
!>          = 'V': for invariant subspace only (SEP);
!>          = 'B': for both eigenvalues and invariant subspace (S and
!>                 SEP).
!> 
[in]COMPQ
!>          COMPQ is CHARACTER*1
!>          = 'V': update the matrix Q of Schur vectors;
!>          = 'N': do not update Q.
!> 
[in]SELECT
!>          SELECT is LOGICAL array, dimension (N)
!>          SELECT specifies the eigenvalues in the selected cluster. To
!>          select the j-th eigenvalue, SELECT(j) must be set to .TRUE..
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix T. N >= 0.
!> 
[in,out]T
!>          T is COMPLEX array, dimension (LDT,N)
!>          On entry, the upper triangular matrix T.
!>          On exit, T is overwritten by the reordered matrix T, with the
!>          selected eigenvalues as the leading diagonal elements.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= max(1,N).
!> 
[in,out]Q
!>          Q is COMPLEX array, dimension (LDQ,N)
!>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
!>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
!>          unitary transformation matrix which reorders T; the leading M
!>          columns of Q form an orthonormal basis for the specified
!>          invariant subspace.
!>          If COMPQ = 'N', Q is not referenced.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>          The leading dimension of the array Q.
!>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
!> 
[out]W
!>          W is COMPLEX array, dimension (N)
!>          The reordered eigenvalues of T, in the same order as they
!>          appear on the diagonal of T.
!> 
[out]M
!>          M is INTEGER
!>          The dimension of the specified invariant subspace.
!>          0 <= M <= N.
!> 
[out]S
!>          S is REAL
!>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
!>          condition number for the selected cluster of eigenvalues.
!>          S cannot underestimate the true reciprocal condition number
!>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
!>          If JOB = 'N' or 'V', S is not referenced.
!> 
[out]SEP
!>          SEP is REAL
!>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
!>          condition number of the specified invariant subspace. If
!>          M = 0 or N, SEP = norm(T).
!>          If JOB = 'N' or 'E', SEP is not referenced.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If JOB = 'N', LWORK >= 1;
!>          if JOB = 'E', LWORK = max(1,M*(N-M));
!>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  CTRSEN first collects the selected eigenvalues by computing a unitary
!>  transformation Z to move them to the top left corner of T. In other
!>  words, the selected eigenvalues are the eigenvalues of T11 in:
!>
!>          Z**H * T * Z = ( T11 T12 ) n1
!>                         (  0  T22 ) n2
!>                            n1  n2
!>
!>  where N = n1+n2. The first
!>  n1 columns of Z span the specified invariant subspace of T.
!>
!>  If T has been obtained from the Schur factorization of a matrix
!>  A = Q*T*Q**H, then the reordered Schur factorization of A is given by
!>  A = (Q*Z)*(Z**H*T*Z)*(Q*Z)**H, and the first n1 columns of Q*Z span the
!>  corresponding invariant subspace of A.
!>
!>  The reciprocal condition number of the average of the eigenvalues of
!>  T11 may be returned in S. S lies between 0 (very badly conditioned)
!>  and 1 (very well conditioned). It is computed as follows. First we
!>  compute R so that
!>
!>                         P = ( I  R ) n1
!>                             ( 0  0 ) n2
!>                               n1 n2
!>
!>  is the projector on the invariant subspace associated with T11.
!>  R is the solution of the Sylvester equation:
!>
!>                        T11*R - R*T22 = T12.
!>
!>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
!>  the two-norm of M. Then S is computed as the lower bound
!>
!>                      (1 + F-norm(R)**2)**(-1/2)
!>
!>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
!>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
!>  sqrt(N).
!>
!>  An approximate error bound for the computed average of the
!>  eigenvalues of T11 is
!>
!>                         EPS * norm(T) / S
!>
!>  where EPS is the machine precision.
!>
!>  The reciprocal condition number of the right invariant subspace
!>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
!>  SEP is defined as the separation of T11 and T22:
!>
!>                     sep( T11, T22 ) = sigma-min( C )
!>
!>  where sigma-min(C) is the smallest singular value of the
!>  n1*n2-by-n1*n2 matrix
!>
!>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
!>
!>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
!>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
!>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
!>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
!>
!>  When SEP is small, small changes in T can cause large changes in
!>  the invariant subspace. An approximate bound on the maximum angular
!>  error in the computed right invariant subspace is
!>
!>                      EPS * norm(T) / SEP
!> 

Definition at line 260 of file ctrsen.f.

263*
264* -- LAPACK computational routine --
265* -- LAPACK is a software package provided by Univ. of Tennessee, --
266* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
267*
268* .. Scalar Arguments ..
269 CHARACTER COMPQ, JOB
270 INTEGER INFO, LDQ, LDT, LWORK, M, N
271 REAL S, SEP
272* ..
273* .. Array Arguments ..
274 LOGICAL SELECT( * )
275 COMPLEX Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
276* ..
277*
278* =====================================================================
279*
280* .. Parameters ..
281 REAL ZERO, ONE
282 parameter( zero = 0.0e+0, one = 1.0e+0 )
283* ..
284* .. Local Scalars ..
285 LOGICAL LQUERY, WANTBH, WANTQ, WANTS, WANTSP
286 INTEGER IERR, K, KASE, KS, LWMIN, N1, N2, NN
287 REAL EST, RNORM, SCALE
288* ..
289* .. Local Arrays ..
290 INTEGER ISAVE( 3 )
291 REAL RWORK( 1 )
292* ..
293* .. External Functions ..
294 LOGICAL LSAME
295 REAL CLANGE, SROUNDUP_LWORK
296 EXTERNAL lsame, clange, sroundup_lwork
297* ..
298* .. External Subroutines ..
299 EXTERNAL clacn2, clacpy, ctrexc, ctrsyl,
300 $ xerbla
301* ..
302* .. Intrinsic Functions ..
303 INTRINSIC max, sqrt
304* ..
305* .. Executable Statements ..
306*
307* Decode and test the input parameters.
308*
309 wantbh = lsame( job, 'B' )
310 wants = lsame( job, 'E' ) .OR. wantbh
311 wantsp = lsame( job, 'V' ) .OR. wantbh
312 wantq = lsame( compq, 'V' )
313*
314* Set M to the number of selected eigenvalues.
315*
316 m = 0
317 DO 10 k = 1, n
318 IF( SELECT( k ) )
319 $ m = m + 1
320 10 CONTINUE
321*
322 n1 = m
323 n2 = n - m
324 nn = n1*n2
325*
326 info = 0
327 lquery = ( lwork.EQ.-1 )
328*
329 IF( wantsp ) THEN
330 lwmin = max( 1, 2*nn )
331 ELSE IF( lsame( job, 'N' ) ) THEN
332 lwmin = 1
333 ELSE IF( lsame( job, 'E' ) ) THEN
334 lwmin = max( 1, nn )
335 END IF
336*
337 IF( .NOT.lsame( job, 'N' ) .AND. .NOT.wants .AND. .NOT.wantsp )
338 $ THEN
339 info = -1
340 ELSE IF( .NOT.lsame( compq, 'N' ) .AND. .NOT.wantq ) THEN
341 info = -2
342 ELSE IF( n.LT.0 ) THEN
343 info = -4
344 ELSE IF( ldt.LT.max( 1, n ) ) THEN
345 info = -6
346 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
347 info = -8
348 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
349 info = -14
350 END IF
351*
352 IF( info.EQ.0 ) THEN
353 work( 1 ) = sroundup_lwork(lwmin)
354 END IF
355*
356 IF( info.NE.0 ) THEN
357 CALL xerbla( 'CTRSEN', -info )
358 RETURN
359 ELSE IF( lquery ) THEN
360 RETURN
361 END IF
362*
363* Quick return if possible
364*
365 IF( m.EQ.n .OR. m.EQ.0 ) THEN
366 IF( wants )
367 $ s = one
368 IF( wantsp )
369 $ sep = clange( '1', n, n, t, ldt, rwork )
370 GO TO 40
371 END IF
372*
373* Collect the selected eigenvalues at the top left corner of T.
374*
375 ks = 0
376 DO 20 k = 1, n
377 IF( SELECT( k ) ) THEN
378 ks = ks + 1
379*
380* Swap the K-th eigenvalue to position KS.
381*
382 IF( k.NE.ks )
383 $ CALL ctrexc( compq, n, t, ldt, q, ldq, k, ks, ierr )
384 END IF
385 20 CONTINUE
386*
387 IF( wants ) THEN
388*
389* Solve the Sylvester equation for R:
390*
391* T11*R - R*T22 = scale*T12
392*
393 CALL clacpy( 'F', n1, n2, t( 1, n1+1 ), ldt, work, n1 )
394 CALL ctrsyl( 'N', 'N', -1, n1, n2, t, ldt, t( n1+1, n1+1 ),
395 $ ldt, work, n1, scale, ierr )
396*
397* Estimate the reciprocal of the condition number of the cluster
398* of eigenvalues.
399*
400 rnorm = clange( 'F', n1, n2, work, n1, rwork )
401 IF( rnorm.EQ.zero ) THEN
402 s = one
403 ELSE
404 s = scale / ( sqrt( scale*scale / rnorm+rnorm )*
405 $ sqrt( rnorm ) )
406 END IF
407 END IF
408*
409 IF( wantsp ) THEN
410*
411* Estimate sep(T11,T22).
412*
413 est = zero
414 kase = 0
415 30 CONTINUE
416 CALL clacn2( nn, work( nn+1 ), work, est, kase, isave )
417 IF( kase.NE.0 ) THEN
418 IF( kase.EQ.1 ) THEN
419*
420* Solve T11*R - R*T22 = scale*X.
421*
422 CALL ctrsyl( 'N', 'N', -1, n1, n2, t, ldt,
423 $ t( n1+1, n1+1 ), ldt, work, n1, scale,
424 $ ierr )
425 ELSE
426*
427* Solve T11**H*R - R*T22**H = scale*X.
428*
429 CALL ctrsyl( 'C', 'C', -1, n1, n2, t, ldt,
430 $ t( n1+1, n1+1 ), ldt, work, n1, scale,
431 $ ierr )
432 END IF
433 GO TO 30
434 END IF
435*
436 sep = scale / est
437 END IF
438*
439 40 CONTINUE
440*
441* Copy reordered eigenvalues to W.
442*
443 DO 50 k = 1, n
444 w( k ) = t( k, k )
445 50 CONTINUE
446*
447 work( 1 ) = sroundup_lwork(lwmin)
448*
449 RETURN
450*
451* End of CTRSEN
452*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:113
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
CTREXC
Definition ctrexc.f:124
subroutine ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
CTRSYL
Definition ctrsyl.f:155
Here is the call graph for this function:
Here is the caller graph for this function: