LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dstevd.f
Go to the documentation of this file.
1*> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DSTEVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
20* LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ
24* INTEGER INFO, LDZ, LIWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
38*> real symmetric tridiagonal matrix. If eigenvectors are desired, it
39*> uses a divide and conquer algorithm.
40*>
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] JOBZ
47*> \verbatim
48*> JOBZ is CHARACTER*1
49*> = 'N': Compute eigenvalues only;
50*> = 'V': Compute eigenvalues and eigenvectors.
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*> N is INTEGER
56*> The order of the matrix. N >= 0.
57*> \endverbatim
58*>
59*> \param[in,out] D
60*> \verbatim
61*> D is DOUBLE PRECISION array, dimension (N)
62*> On entry, the n diagonal elements of the tridiagonal matrix
63*> A.
64*> On exit, if INFO = 0, the eigenvalues in ascending order.
65*> \endverbatim
66*>
67*> \param[in,out] E
68*> \verbatim
69*> E is DOUBLE PRECISION array, dimension (N-1)
70*> On entry, the (n-1) subdiagonal elements of the tridiagonal
71*> matrix A, stored in elements 1 to N-1 of E.
72*> On exit, the contents of E are destroyed.
73*> \endverbatim
74*>
75*> \param[out] Z
76*> \verbatim
77*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
78*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
79*> eigenvectors of the matrix A, with the i-th column of Z
80*> holding the eigenvector associated with D(i).
81*> If JOBZ = 'N', then Z is not referenced.
82*> \endverbatim
83*>
84*> \param[in] LDZ
85*> \verbatim
86*> LDZ is INTEGER
87*> The leading dimension of the array Z. LDZ >= 1, and if
88*> JOBZ = 'V', LDZ >= max(1,N).
89*> \endverbatim
90*>
91*> \param[out] WORK
92*> \verbatim
93*> WORK is DOUBLE PRECISION array,
94*> dimension (LWORK)
95*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
96*> \endverbatim
97*>
98*> \param[in] LWORK
99*> \verbatim
100*> LWORK is INTEGER
101*> The dimension of the array WORK.
102*> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
103*> If JOBZ = 'V' and N > 1 then LWORK must be at least
104*> ( 1 + 4*N + N**2 ).
105*>
106*> If LWORK = -1, then a workspace query is assumed; the routine
107*> only calculates the optimal sizes of the WORK and IWORK
108*> arrays, returns these values as the first entries of the WORK
109*> and IWORK arrays, and no error message related to LWORK or
110*> LIWORK is issued by XERBLA.
111*> \endverbatim
112*>
113*> \param[out] IWORK
114*> \verbatim
115*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
116*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
117*> \endverbatim
118*>
119*> \param[in] LIWORK
120*> \verbatim
121*> LIWORK is INTEGER
122*> The dimension of the array IWORK.
123*> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
124*> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
125*>
126*> If LIWORK = -1, then a workspace query is assumed; the
127*> routine only calculates the optimal sizes of the WORK and
128*> IWORK arrays, returns these values as the first entries of
129*> the WORK and IWORK arrays, and no error message related to
130*> LWORK or LIWORK is issued by XERBLA.
131*> \endverbatim
132*>
133*> \param[out] INFO
134*> \verbatim
135*> INFO is INTEGER
136*> = 0: successful exit
137*> < 0: if INFO = -i, the i-th argument had an illegal value
138*> > 0: if INFO = i, the algorithm failed to converge; i
139*> off-diagonal elements of E did not converge to zero.
140*> \endverbatim
141*
142* Authors:
143* ========
144*
145*> \author Univ. of Tennessee
146*> \author Univ. of California Berkeley
147*> \author Univ. of Colorado Denver
148*> \author NAG Ltd.
149*
150*> \ingroup stevd
151*
152* =====================================================================
153 SUBROUTINE dstevd( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
154 $ LIWORK, INFO )
155*
156* -- LAPACK driver routine --
157* -- LAPACK is a software package provided by Univ. of Tennessee, --
158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159*
160* .. Scalar Arguments ..
161 CHARACTER JOBZ
162 INTEGER INFO, LDZ, LIWORK, LWORK, N
163* ..
164* .. Array Arguments ..
165 INTEGER IWORK( * )
166 DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
167* ..
168*
169* =====================================================================
170*
171* .. Parameters ..
172 DOUBLE PRECISION ZERO, ONE
173 parameter( zero = 0.0d0, one = 1.0d0 )
174* ..
175* .. Local Scalars ..
176 LOGICAL LQUERY, WANTZ
177 INTEGER ISCALE, LIWMIN, LWMIN
178 DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
179 $ tnrm
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 DOUBLE PRECISION DLAMCH, DLANST
184 EXTERNAL lsame, dlamch, dlanst
185* ..
186* .. External Subroutines ..
187 EXTERNAL dscal, dstedc, dsterf, xerbla
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC sqrt
191* ..
192* .. Executable Statements ..
193*
194* Test the input parameters.
195*
196 wantz = lsame( jobz, 'V' )
197 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
198*
199 info = 0
200 liwmin = 1
201 lwmin = 1
202 IF( n.GT.1 .AND. wantz ) THEN
203 lwmin = 1 + 4*n + n**2
204 liwmin = 3 + 5*n
205 END IF
206*
207 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
208 info = -1
209 ELSE IF( n.LT.0 ) THEN
210 info = -2
211 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
212 info = -6
213 END IF
214*
215 IF( info.EQ.0 ) THEN
216 work( 1 ) = lwmin
217 iwork( 1 ) = liwmin
218*
219 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
220 info = -8
221 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
222 info = -10
223 END IF
224 END IF
225*
226 IF( info.NE.0 ) THEN
227 CALL xerbla( 'DSTEVD', -info )
228 RETURN
229 ELSE IF( lquery ) THEN
230 RETURN
231 END IF
232*
233* Quick return if possible
234*
235 IF( n.EQ.0 )
236 $ RETURN
237*
238 IF( n.EQ.1 ) THEN
239 IF( wantz )
240 $ z( 1, 1 ) = one
241 RETURN
242 END IF
243*
244* Get machine constants.
245*
246 safmin = dlamch( 'Safe minimum' )
247 eps = dlamch( 'Precision' )
248 smlnum = safmin / eps
249 bignum = one / smlnum
250 rmin = sqrt( smlnum )
251 rmax = sqrt( bignum )
252*
253* Scale matrix to allowable range, if necessary.
254*
255 iscale = 0
256 tnrm = dlanst( 'M', n, d, e )
257 IF( tnrm.GT.zero .AND. tnrm.LT.rmin ) THEN
258 iscale = 1
259 sigma = rmin / tnrm
260 ELSE IF( tnrm.GT.rmax ) THEN
261 iscale = 1
262 sigma = rmax / tnrm
263 END IF
264 IF( iscale.EQ.1 ) THEN
265 CALL dscal( n, sigma, d, 1 )
266 CALL dscal( n-1, sigma, e( 1 ), 1 )
267 END IF
268*
269* For eigenvalues only, call DSTERF. For eigenvalues and
270* eigenvectors, call DSTEDC.
271*
272 IF( .NOT.wantz ) THEN
273 CALL dsterf( n, d, e, info )
274 ELSE
275 CALL dstedc( 'I', n, d, e, z, ldz, work, lwork, iwork,
276 $ liwork,
277 $ info )
278 END IF
279*
280* If matrix was scaled, then rescale eigenvalues appropriately.
281*
282 IF( iscale.EQ.1 )
283 $ CALL dscal( n, one / sigma, d, 1 )
284*
285 work( 1 ) = lwmin
286 iwork( 1 ) = liwmin
287*
288 RETURN
289*
290* End of DSTEVD
291*
292 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:180
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:84
subroutine dstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition dstevd.f:155