LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dstevd | ( | character | jobz, |
integer | n, | ||
double precision, dimension( * ) | d, | ||
double precision, dimension( * ) | e, | ||
double precision, dimension( ldz, * ) | z, | ||
integer | ldz, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer, dimension( * ) | iwork, | ||
integer | liwork, | ||
integer | info ) |
DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Download DSTEVD + dependencies [TGZ] [ZIP] [TXT]
!> !> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a !> real symmetric tridiagonal matrix. If eigenvectors are desired, it !> uses a divide and conquer algorithm. !> !>
[in] | JOBZ | !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> |
[in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
[in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the n diagonal elements of the tridiagonal matrix !> A. !> On exit, if INFO = 0, the eigenvalues in ascending order. !> |
[in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the (n-1) subdiagonal elements of the tridiagonal !> matrix A, stored in elements 1 to N-1 of E. !> On exit, the contents of E are destroyed. !> |
[out] | Z | !> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with D(i). !> If JOBZ = 'N', then Z is not referenced. !> |
[in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, !> dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1. !> If JOBZ = 'V' and N > 1 then LWORK must be at least !> ( 1 + 4*N + N**2 ). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
[in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1. !> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of E did not converge to zero. !> |
Definition at line 153 of file dstevd.f.