LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dorgrq()

subroutine dorgrq ( integer m,
integer n,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer lwork,
integer info )

DORGRQ

Download DORGRQ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
!> which is defined as the last M rows of a product of K elementary
!> reflectors of order N
!>
!>       Q  =  H(1) H(2) . . . H(k)
!>
!> as returned by DGERQF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. N >= M.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. M >= K >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the (m-k+i)-th row must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by DGERQF in the last k rows of its array argument
!>          A.
!>          On exit, the M-by-N matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGERQF.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,M).
!>          For optimum performance LWORK >= M*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 125 of file dorgrq.f.

126*
127* -- LAPACK computational routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 INTEGER INFO, K, LDA, LWORK, M, N
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
136* ..
137*
138* =====================================================================
139*
140* .. Parameters ..
141 DOUBLE PRECISION ZERO
142 parameter( zero = 0.0d+0 )
143* ..
144* .. Local Scalars ..
145 LOGICAL LQUERY
146 INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
147 $ LWKOPT, NB, NBMIN, NX
148* ..
149* .. External Subroutines ..
150 EXTERNAL dlarfb, dlarft, dorgr2, xerbla
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC max, min
154* ..
155* .. External Functions ..
156 INTEGER ILAENV
157 EXTERNAL ilaenv
158* ..
159* .. Executable Statements ..
160*
161* Test the input arguments
162*
163 info = 0
164 lquery = ( lwork.EQ.-1 )
165 IF( m.LT.0 ) THEN
166 info = -1
167 ELSE IF( n.LT.m ) THEN
168 info = -2
169 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
170 info = -3
171 ELSE IF( lda.LT.max( 1, m ) ) THEN
172 info = -5
173 END IF
174*
175 IF( info.EQ.0 ) THEN
176 IF( m.LE.0 ) THEN
177 lwkopt = 1
178 ELSE
179 nb = ilaenv( 1, 'DORGRQ', ' ', m, n, k, -1 )
180 lwkopt = m*nb
181 END IF
182 work( 1 ) = lwkopt
183*
184 IF( lwork.LT.max( 1, m ) .AND. .NOT.lquery ) THEN
185 info = -8
186 END IF
187 END IF
188*
189 IF( info.NE.0 ) THEN
190 CALL xerbla( 'DORGRQ', -info )
191 RETURN
192 ELSE IF( lquery ) THEN
193 RETURN
194 END IF
195*
196* Quick return if possible
197*
198 IF( m.LE.0 ) THEN
199 RETURN
200 END IF
201*
202 nbmin = 2
203 nx = 0
204 iws = m
205 IF( nb.GT.1 .AND. nb.LT.k ) THEN
206*
207* Determine when to cross over from blocked to unblocked code.
208*
209 nx = max( 0, ilaenv( 3, 'DORGRQ', ' ', m, n, k, -1 ) )
210 IF( nx.LT.k ) THEN
211*
212* Determine if workspace is large enough for blocked code.
213*
214 ldwork = m
215 iws = ldwork*nb
216 IF( lwork.LT.iws ) THEN
217*
218* Not enough workspace to use optimal NB: reduce NB and
219* determine the minimum value of NB.
220*
221 nb = lwork / ldwork
222 nbmin = max( 2, ilaenv( 2, 'DORGRQ', ' ', m, n, k,
223 $ -1 ) )
224 END IF
225 END IF
226 END IF
227*
228 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
229*
230* Use blocked code after the first block.
231* The last kk rows are handled by the block method.
232*
233 kk = min( k, ( ( k-nx+nb-1 ) / nb )*nb )
234*
235* Set A(1:m-kk,n-kk+1:n) to zero.
236*
237 DO 20 j = n - kk + 1, n
238 DO 10 i = 1, m - kk
239 a( i, j ) = zero
240 10 CONTINUE
241 20 CONTINUE
242 ELSE
243 kk = 0
244 END IF
245*
246* Use unblocked code for the first or only block.
247*
248 CALL dorgr2( m-kk, n-kk, k-kk, a, lda, tau, work, iinfo )
249*
250 IF( kk.GT.0 ) THEN
251*
252* Use blocked code
253*
254 DO 50 i = k - kk + 1, k, nb
255 ib = min( nb, k-i+1 )
256 ii = m - k + i
257 IF( ii.GT.1 ) THEN
258*
259* Form the triangular factor of the block reflector
260* H = H(i+ib-1) . . . H(i+1) H(i)
261*
262 CALL dlarft( 'Backward', 'Rowwise', n-k+i+ib-1, ib,
263 $ a( ii, 1 ), lda, tau( i ), work, ldwork )
264*
265* Apply H**T to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
266*
267 CALL dlarfb( 'Right', 'Transpose', 'Backward',
268 $ 'Rowwise',
269 $ ii-1, n-k+i+ib-1, ib, a( ii, 1 ), lda, work,
270 $ ldwork, a, lda, work( ib+1 ), ldwork )
271 END IF
272*
273* Apply H**T to columns 1:n-k+i+ib-1 of current block
274*
275 CALL dorgr2( ib, n-k+i+ib-1, ib, a( ii, 1 ), lda,
276 $ tau( i ),
277 $ work, iinfo )
278*
279* Set columns n-k+i+ib:n of current block to zero
280*
281 DO 40 l = n - k + i + ib, n
282 DO 30 j = ii, ii + ib - 1
283 a( j, l ) = zero
284 30 CONTINUE
285 40 CONTINUE
286 50 CONTINUE
287 END IF
288*
289 work( 1 ) = iws
290 RETURN
291*
292* End of DORGRQ
293*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
subroutine dorgr2(m, n, k, a, lda, tau, work, info)
DORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf...
Definition dorgr2.f:112
Here is the call graph for this function:
Here is the caller graph for this function: