LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgelsx()

subroutine cgelsx ( integer  m,
integer  n,
integer  nrhs,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
integer, dimension( * )  jpvt,
real  rcond,
integer  rank,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer  info 
)

CGELSX solves overdetermined or underdetermined systems for GE matrices

Download CGELSX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine CGELSY.

 CGELSX computes the minimum-norm solution to a complex linear least
 squares problem:
     minimize || A * X - B ||
 using a complete orthogonal factorization of A.  A is an M-by-N
 matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can be
 handled in a single call; they are stored as the columns of the
 M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 matrix X.

 The routine first computes a QR factorization with column pivoting:
     A * P = Q * [ R11 R12 ]
                 [  0  R22 ]
 with R11 defined as the largest leading submatrix whose estimated
 condition number is less than 1/RCOND.  The order of R11, RANK,
 is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihilated
 by unitary transformations from the right, arriving at the
 complete orthogonal factorization:
    A * P = Q * [ T11 0 ] * Z
                [  0  0 ]
 The minimum-norm solution is then
    X = P * Z**H [ inv(T11)*Q1**H*B ]
                 [        0         ]
 where Q1 consists of the first RANK columns of Q.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of
          columns of matrices B and X. NRHS >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A has been overwritten by details of its
          complete orthogonal factorization.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in,out]B
          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the M-by-NRHS right hand side matrix B.
          On exit, the N-by-NRHS solution matrix X.
          If m >= n and RANK = n, the residual sum-of-squares for
          the solution in the i-th column is given by the sum of
          squares of elements N+1:M in that column.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,M,N).
[in,out]JPVT
          JPVT is INTEGER array, dimension (N)
          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
          initial column, otherwise it is a free column.  Before
          the QR factorization of A, all initial columns are
          permuted to the leading positions; only the remaining
          free columns are moved as a result of column pivoting
          during the factorization.
          On exit, if JPVT(i) = k, then the i-th column of A*P
          was the k-th column of A.
[in]RCOND
          RCOND is REAL
          RCOND is used to determine the effective rank of A, which
          is defined as the order of the largest leading triangular
          submatrix R11 in the QR factorization with pivoting of A,
          whose estimated condition number < 1/RCOND.
[out]RANK
          RANK is INTEGER
          The effective rank of A, i.e., the order of the submatrix
          R11.  This is the same as the order of the submatrix T11
          in the complete orthogonal factorization of A.
[out]WORK
          WORK is COMPLEX array, dimension
                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
[out]RWORK
          RWORK is REAL array, dimension (2*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 182 of file cgelsx.f.

184*
185* -- LAPACK driver routine --
186* -- LAPACK is a software package provided by Univ. of Tennessee, --
187* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
188*
189* .. Scalar Arguments ..
190 INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
191 REAL RCOND
192* ..
193* .. Array Arguments ..
194 INTEGER JPVT( * )
195 REAL RWORK( * )
196 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
197* ..
198*
199* =====================================================================
200*
201* .. Parameters ..
202 INTEGER IMAX, IMIN
203 parameter( imax = 1, imin = 2 )
204 REAL ZERO, ONE, DONE, NTDONE
205 parameter( zero = 0.0e+0, one = 1.0e+0, done = zero,
206 $ ntdone = one )
207 COMPLEX CZERO, CONE
208 parameter( czero = ( 0.0e+0, 0.0e+0 ),
209 $ cone = ( 1.0e+0, 0.0e+0 ) )
210* ..
211* .. Local Scalars ..
212 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
213 REAL ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
214 $ SMLNUM
215 COMPLEX C1, C2, S1, S2, T1, T2
216* ..
217* .. External Subroutines ..
218 EXTERNAL cgeqpf, claic1, clascl, claset, clatzm, ctrsm,
220* ..
221* .. External Functions ..
222 REAL CLANGE, SLAMCH
223 EXTERNAL clange, slamch
224* ..
225* .. Intrinsic Functions ..
226 INTRINSIC abs, conjg, max, min
227* ..
228* .. Executable Statements ..
229*
230 mn = min( m, n )
231 ismin = mn + 1
232 ismax = 2*mn + 1
233*
234* Test the input arguments.
235*
236 info = 0
237 IF( m.LT.0 ) THEN
238 info = -1
239 ELSE IF( n.LT.0 ) THEN
240 info = -2
241 ELSE IF( nrhs.LT.0 ) THEN
242 info = -3
243 ELSE IF( lda.LT.max( 1, m ) ) THEN
244 info = -5
245 ELSE IF( ldb.LT.max( 1, m, n ) ) THEN
246 info = -7
247 END IF
248*
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'CGELSX', -info )
251 RETURN
252 END IF
253*
254* Quick return if possible
255*
256 IF( min( m, n, nrhs ).EQ.0 ) THEN
257 rank = 0
258 RETURN
259 END IF
260*
261* Get machine parameters
262*
263 smlnum = slamch( 'S' ) / slamch( 'P' )
264 bignum = one / smlnum
265*
266* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
267*
268 anrm = clange( 'M', m, n, a, lda, rwork )
269 iascl = 0
270 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
271*
272* Scale matrix norm up to SMLNUM
273*
274 CALL clascl( 'G', 0, 0, anrm, smlnum, m, n, a, lda, info )
275 iascl = 1
276 ELSE IF( anrm.GT.bignum ) THEN
277*
278* Scale matrix norm down to BIGNUM
279*
280 CALL clascl( 'G', 0, 0, anrm, bignum, m, n, a, lda, info )
281 iascl = 2
282 ELSE IF( anrm.EQ.zero ) THEN
283*
284* Matrix all zero. Return zero solution.
285*
286 CALL claset( 'F', max( m, n ), nrhs, czero, czero, b, ldb )
287 rank = 0
288 GO TO 100
289 END IF
290*
291 bnrm = clange( 'M', m, nrhs, b, ldb, rwork )
292 ibscl = 0
293 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
294*
295* Scale matrix norm up to SMLNUM
296*
297 CALL clascl( 'G', 0, 0, bnrm, smlnum, m, nrhs, b, ldb, info )
298 ibscl = 1
299 ELSE IF( bnrm.GT.bignum ) THEN
300*
301* Scale matrix norm down to BIGNUM
302*
303 CALL clascl( 'G', 0, 0, bnrm, bignum, m, nrhs, b, ldb, info )
304 ibscl = 2
305 END IF
306*
307* Compute QR factorization with column pivoting of A:
308* A * P = Q * R
309*
310 CALL cgeqpf( m, n, a, lda, jpvt, work( 1 ), work( mn+1 ), rwork,
311 $ info )
312*
313* complex workspace MN+N. Real workspace 2*N. Details of Householder
314* rotations stored in WORK(1:MN).
315*
316* Determine RANK using incremental condition estimation
317*
318 work( ismin ) = cone
319 work( ismax ) = cone
320 smax = abs( a( 1, 1 ) )
321 smin = smax
322 IF( abs( a( 1, 1 ) ).EQ.zero ) THEN
323 rank = 0
324 CALL claset( 'F', max( m, n ), nrhs, czero, czero, b, ldb )
325 GO TO 100
326 ELSE
327 rank = 1
328 END IF
329*
330 10 CONTINUE
331 IF( rank.LT.mn ) THEN
332 i = rank + 1
333 CALL claic1( imin, rank, work( ismin ), smin, a( 1, i ),
334 $ a( i, i ), sminpr, s1, c1 )
335 CALL claic1( imax, rank, work( ismax ), smax, a( 1, i ),
336 $ a( i, i ), smaxpr, s2, c2 )
337*
338 IF( smaxpr*rcond.LE.sminpr ) THEN
339 DO 20 i = 1, rank
340 work( ismin+i-1 ) = s1*work( ismin+i-1 )
341 work( ismax+i-1 ) = s2*work( ismax+i-1 )
342 20 CONTINUE
343 work( ismin+rank ) = c1
344 work( ismax+rank ) = c2
345 smin = sminpr
346 smax = smaxpr
347 rank = rank + 1
348 GO TO 10
349 END IF
350 END IF
351*
352* Logically partition R = [ R11 R12 ]
353* [ 0 R22 ]
354* where R11 = R(1:RANK,1:RANK)
355*
356* [R11,R12] = [ T11, 0 ] * Y
357*
358 IF( rank.LT.n )
359 $ CALL ctzrqf( rank, n, a, lda, work( mn+1 ), info )
360*
361* Details of Householder rotations stored in WORK(MN+1:2*MN)
362*
363* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
364*
365 CALL cunm2r( 'Left', 'Conjugate transpose', m, nrhs, mn, a, lda,
366 $ work( 1 ), b, ldb, work( 2*mn+1 ), info )
367*
368* workspace NRHS
369*
370* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
371*
372 CALL ctrsm( 'Left', 'Upper', 'No transpose', 'Non-unit', rank,
373 $ nrhs, cone, a, lda, b, ldb )
374*
375 DO 40 i = rank + 1, n
376 DO 30 j = 1, nrhs
377 b( i, j ) = czero
378 30 CONTINUE
379 40 CONTINUE
380*
381* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
382*
383 IF( rank.LT.n ) THEN
384 DO 50 i = 1, rank
385 CALL clatzm( 'Left', n-rank+1, nrhs, a( i, rank+1 ), lda,
386 $ conjg( work( mn+i ) ), b( i, 1 ),
387 $ b( rank+1, 1 ), ldb, work( 2*mn+1 ) )
388 50 CONTINUE
389 END IF
390*
391* workspace NRHS
392*
393* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
394*
395 DO 90 j = 1, nrhs
396 DO 60 i = 1, n
397 work( 2*mn+i ) = ntdone
398 60 CONTINUE
399 DO 80 i = 1, n
400 IF( work( 2*mn+i ).EQ.ntdone ) THEN
401 IF( jpvt( i ).NE.i ) THEN
402 k = i
403 t1 = b( k, j )
404 t2 = b( jpvt( k ), j )
405 70 CONTINUE
406 b( jpvt( k ), j ) = t1
407 work( 2*mn+k ) = done
408 t1 = t2
409 k = jpvt( k )
410 t2 = b( jpvt( k ), j )
411 IF( jpvt( k ).NE.i )
412 $ GO TO 70
413 b( i, j ) = t1
414 work( 2*mn+k ) = done
415 END IF
416 END IF
417 80 CONTINUE
418 90 CONTINUE
419*
420* Undo scaling
421*
422 IF( iascl.EQ.1 ) THEN
423 CALL clascl( 'G', 0, 0, anrm, smlnum, n, nrhs, b, ldb, info )
424 CALL clascl( 'U', 0, 0, smlnum, anrm, rank, rank, a, lda,
425 $ info )
426 ELSE IF( iascl.EQ.2 ) THEN
427 CALL clascl( 'G', 0, 0, anrm, bignum, n, nrhs, b, ldb, info )
428 CALL clascl( 'U', 0, 0, bignum, anrm, rank, rank, a, lda,
429 $ info )
430 END IF
431 IF( ibscl.EQ.1 ) THEN
432 CALL clascl( 'G', 0, 0, smlnum, bnrm, n, nrhs, b, ldb, info )
433 ELSE IF( ibscl.EQ.2 ) THEN
434 CALL clascl( 'G', 0, 0, bignum, bnrm, n, nrhs, b, ldb, info )
435 END IF
436*
437 100 CONTINUE
438*
439 RETURN
440*
441* End of CGELSX
442*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
CGEQPF
Definition cgeqpf.f:148
subroutine clatzm(side, m, n, v, incv, tau, c1, c2, ldc, work)
CLATZM
Definition clatzm.f:152
subroutine ctzrqf(m, n, a, lda, tau, info)
CTZRQF
Definition ctzrqf.f:138
subroutine claic1(job, j, x, sest, w, gamma, sestpr, s, c)
CLAIC1 applies one step of incremental condition estimation.
Definition claic1.f:135
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
subroutine clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition clascl.f:143
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
subroutine cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition cunm2r.f:159
Here is the call graph for this function: