LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cungr2.f
Go to the documentation of this file.
1*> \brief \b CUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUNGR2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungr2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungr2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungr2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, M, N
23* ..
24* .. Array Arguments ..
25* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CUNGR2 generates an m by n complex matrix Q with orthonormal rows,
35*> which is defined as the last m rows of a product of k elementary
36*> reflectors of order n
37*>
38*> Q = H(1)**H H(2)**H . . . H(k)**H
39*>
40*> as returned by CGERQF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. N >= M.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. M >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is COMPLEX array, dimension (LDA,N)
68*> On entry, the (m-k+i)-th row must contain the vector which
69*> defines the elementary reflector H(i), for i = 1,2,...,k, as
70*> returned by CGERQF in the last k rows of its array argument
71*> A.
72*> On exit, the m-by-n matrix Q.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The first dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] TAU
82*> \verbatim
83*> TAU is COMPLEX array, dimension (K)
84*> TAU(i) must contain the scalar factor of the elementary
85*> reflector H(i), as returned by CGERQF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is COMPLEX array, dimension (M)
91*> \endverbatim
92*>
93*> \param[out] INFO
94*> \verbatim
95*> INFO is INTEGER
96*> = 0: successful exit
97*> < 0: if INFO = -i, the i-th argument has an illegal value
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup ungr2
109*
110* =====================================================================
111 SUBROUTINE cungr2( M, N, K, A, LDA, TAU, WORK, INFO )
112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX ONE, ZERO
128 parameter( one = ( 1.0e+0, 0.0e+0 ),
129 $ zero = ( 0.0e+0, 0.0e+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, II, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL clacgv, clarf1l, cscal, xerbla
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC conjg, max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'CUNGR2', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( m.LE.0 )
162 $ RETURN
163*
164 IF( k.LT.m ) THEN
165*
166* Initialise rows 1:m-k to rows of the unit matrix
167*
168 DO 20 j = 1, n
169 DO 10 l = 1, m - k
170 a( l, j ) = zero
171 10 CONTINUE
172 IF( j.GT.n-m .AND. j.LE.n-k )
173 $ a( m-n+j, j ) = one
174 20 CONTINUE
175 END IF
176*
177 DO 40 i = 1, k
178 ii = m - k + i
179*
180* Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
181*
182 CALL clacgv( n-m+ii-1, a( ii, 1 ), lda )
183 a( ii, n-m+ii ) = one
184 CALL clarf1l( 'Right', ii-1, n-m+ii, a( ii, 1 ), lda,
185 $ conjg( tau( i ) ), a, lda, work )
186 CALL cscal( n-m+ii-1, -tau( i ), a( ii, 1 ), lda )
187 CALL clacgv( n-m+ii-1, a( ii, 1 ), lda )
188 a( ii, n-m+ii ) = one - conjg( tau( i ) )
189*
190* Set A(m-k+i,n-k+i+1:n) to zero
191*
192 DO 30 l = n - m + ii + 1, n
193 a( ii, l ) = zero
194 30 CONTINUE
195 40 CONTINUE
196 RETURN
197*
198* End of CUNGR2
199*
200 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine cungr2(m, n, k, a, lda, tau, work, info)
CUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (u...
Definition cungr2.f:112