LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cungr2()

subroutine cungr2 ( integer m,
integer n,
integer k,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer info )

CUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).

Download CUNGR2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CUNGR2 generates an m by n complex matrix Q with orthonormal rows,
!> which is defined as the last m rows of a product of k elementary
!> reflectors of order n
!>
!>       Q  =  H(1)**H H(2)**H . . . H(k)**H
!>
!> as returned by CGERQF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. N >= M.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. M >= K >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the (m-k+i)-th row must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by CGERQF in the last k rows of its array argument
!>          A.
!>          On exit, the m-by-n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by CGERQF.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file cungr2.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX ONE, ZERO
128 parameter( one = ( 1.0e+0, 0.0e+0 ),
129 $ zero = ( 0.0e+0, 0.0e+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, II, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL clacgv, clarf1l, cscal, xerbla
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC conjg, max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'CUNGR2', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( m.LE.0 )
162 $ RETURN
163*
164 IF( k.LT.m ) THEN
165*
166* Initialise rows 1:m-k to rows of the unit matrix
167*
168 DO 20 j = 1, n
169 DO 10 l = 1, m - k
170 a( l, j ) = zero
171 10 CONTINUE
172 IF( j.GT.n-m .AND. j.LE.n-k )
173 $ a( m-n+j, j ) = one
174 20 CONTINUE
175 END IF
176*
177 DO 40 i = 1, k
178 ii = m - k + i
179*
180* Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
181*
182 CALL clacgv( n-m+ii-1, a( ii, 1 ), lda )
183 a( ii, n-m+ii ) = one
184 CALL clarf1l( 'Right', ii-1, n-m+ii, a( ii, 1 ), lda,
185 $ conjg( tau( i ) ), a, lda, work )
186 CALL cscal( n-m+ii-1, -tau( i ), a( ii, 1 ), lda )
187 CALL clacgv( n-m+ii-1, a( ii, 1 ), lda )
188 a( ii, n-m+ii ) = one - conjg( tau( i ) )
189*
190* Set A(m-k+i,n-k+i+1:n) to zero
191*
192 DO 30 l = n - m + ii + 1, n
193 a( ii, l ) = zero
194 30 CONTINUE
195 40 CONTINUE
196 RETURN
197*
198* End of CUNGR2
199*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: