76
77
78
79
80
81
82 INTEGER KNT, LMAX, NINFO
83 REAL RMAX
84
85
86
87
88
89 REAL ZERO, ONE
90 parameter( zero = 0.0e0, one = 1.0e0 )
91 REAL TWO, FOUR
92 parameter( two = 2.0e0, four = 4.0e0 )
93
94
95 INTEGER I1, I2, I3, I4, IM1, IM2, IM3, IM4, J1, J2, J3
96 REAL BIGNUM, CS, EPS, RES, SMLNUM, SN, SUM, TNRM,
97 $ WI1, WI2, WR1, WR2
98
99
100 REAL Q( 2, 2 ), T( 2, 2 ), T1( 2, 2 ), T2( 2, 2 ),
101 $ VAL( 4 ), VM( 3 )
102
103
104 REAL SLAMCH
106
107
109
110
111 INTRINSIC abs, max, sign
112
113
114
115
116
118 smlnum =
slamch(
'S' ) / eps
119 bignum = one / smlnum
120
121
122
123 val( 1 ) = one
124 val( 2 ) = one + two*eps
125 val( 3 ) = two
126 val( 4 ) = two - four*eps
127 vm( 1 ) = smlnum
128 vm( 2 ) = one
129 vm( 3 ) = bignum
130
131 knt = 0
132 ninfo = 0
133 lmax = 0
134 rmax = zero
135
136
137
138 DO 150 i1 = 1, 4
139 DO 140 i2 = 1, 4
140 DO 130 i3 = 1, 4
141 DO 120 i4 = 1, 4
142 DO 110 im1 = 1, 3
143 DO 100 im2 = 1, 3
144 DO 90 im3 = 1, 3
145 DO 80 im4 = 1, 3
146 t( 1, 1 ) = val( i1 )*vm( im1 )
147 t( 1, 2 ) = val( i2 )*vm( im2 )
148 t( 2, 1 ) = -val( i3 )*vm( im3 )
149 t( 2, 2 ) = val( i4 )*vm( im4 )
150 tnrm = max( abs( t( 1, 1 ) ),
151 $ abs( t( 1, 2 ) ), abs( t( 2, 1 ) ),
152 $ abs( t( 2, 2 ) ) )
153 t1( 1, 1 ) = t( 1, 1 )
154 t1( 1, 2 ) = t( 1, 2 )
155 t1( 2, 1 ) = t( 2, 1 )
156 t1( 2, 2 ) = t( 2, 2 )
157 q( 1, 1 ) = one
158 q( 1, 2 ) = zero
159 q( 2, 1 ) = zero
160 q( 2, 2 ) = one
161
162 CALL slanv2( t( 1, 1 ), t( 1, 2 ),
163 $ t( 2, 1 ), t( 2, 2 ), wr1,
164 $ wi1, wr2, wi2, cs, sn )
165 DO 10 j1 = 1, 2
166 res = q( j1, 1 )*cs + q( j1, 2 )*sn
167 q( j1, 2 ) = -q( j1, 1 )*sn +
168 $ q( j1, 2 )*cs
169 q( j1, 1 ) = res
170 10 CONTINUE
171
172 res = zero
173 res = res + abs( q( 1, 1 )**2+
174 $ q( 1, 2 )**2-one ) / eps
175 res = res + abs( q( 2, 2 )**2+
176 $ q( 2, 1 )**2-one ) / eps
177 res = res + abs( q( 1, 1 )*q( 2, 1 )+
178 $ q( 1, 2 )*q( 2, 2 ) ) / eps
179 DO 40 j1 = 1, 2
180 DO 30 j2 = 1, 2
181 t2( j1, j2 ) = zero
182 DO 20 j3 = 1, 2
183 t2( j1, j2 ) = t2( j1, j2 ) +
184 $ t1( j1, j3 )*
185 $ q( j3, j2 )
186 20 CONTINUE
187 30 CONTINUE
188 40 CONTINUE
189 DO 70 j1 = 1, 2
190 DO 60 j2 = 1, 2
191 sum = t( j1, j2 )
192 DO 50 j3 = 1, 2
193 sum = sum - q( j3, j1 )*
194 $ t2( j3, j2 )
195 50 CONTINUE
196 res = res + abs( sum ) / eps / tnrm
197 60 CONTINUE
198 70 CONTINUE
199 IF( t( 2, 1 ).NE.zero .AND.
200 $ ( t( 1, 1 ).NE.t( 2,
201 $ 2 ) .OR. sign( one, t( 1,
202 $ 2 ) )*sign( one, t( 2,
203 $ 1 ) ).GT.zero ) )res = res + one / eps
204 knt = knt + 1
205 IF( res.GT.rmax ) THEN
206 lmax = knt
207 rmax = res
208 END IF
209 80 CONTINUE
210 90 CONTINUE
211 100 CONTINUE
212 110 CONTINUE
213 120 CONTINUE
214 130 CONTINUE
215 140 CONTINUE
216 150 CONTINUE
217
218 RETURN
219
220
221
real function slamch(cmach)
SLAMCH
subroutine slanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)
SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.