LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
csprfs.f
Go to the documentation of this file.
1*> \brief \b CSPRFS
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CSPRFS + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csprfs.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csprfs.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csprfs.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
20* FERR, BERR, WORK, RWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER UPLO
24* INTEGER INFO, LDB, LDX, N, NRHS
25* ..
26* .. Array Arguments ..
27* INTEGER IPIV( * )
28* REAL BERR( * ), FERR( * ), RWORK( * )
29* COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
30* $ X( LDX, * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> CSPRFS improves the computed solution to a system of linear
40*> equations when the coefficient matrix is symmetric indefinite
41*> and packed, and provides error bounds and backward error estimates
42*> for the solution.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] UPLO
49*> \verbatim
50*> UPLO is CHARACTER*1
51*> = 'U': Upper triangle of A is stored;
52*> = 'L': Lower triangle of A is stored.
53*> \endverbatim
54*>
55*> \param[in] N
56*> \verbatim
57*> N is INTEGER
58*> The order of the matrix A. N >= 0.
59*> \endverbatim
60*>
61*> \param[in] NRHS
62*> \verbatim
63*> NRHS is INTEGER
64*> The number of right hand sides, i.e., the number of columns
65*> of the matrices B and X. NRHS >= 0.
66*> \endverbatim
67*>
68*> \param[in] AP
69*> \verbatim
70*> AP is COMPLEX array, dimension (N*(N+1)/2)
71*> The upper or lower triangle of the symmetric matrix A, packed
72*> columnwise in a linear array. The j-th column of A is stored
73*> in the array AP as follows:
74*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
75*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
76*> \endverbatim
77*>
78*> \param[in] AFP
79*> \verbatim
80*> AFP is COMPLEX array, dimension (N*(N+1)/2)
81*> The factored form of the matrix A. AFP contains the block
82*> diagonal matrix D and the multipliers used to obtain the
83*> factor U or L from the factorization A = U*D*U**T or
84*> A = L*D*L**T as computed by CSPTRF, stored as a packed
85*> triangular matrix.
86*> \endverbatim
87*>
88*> \param[in] IPIV
89*> \verbatim
90*> IPIV is INTEGER array, dimension (N)
91*> Details of the interchanges and the block structure of D
92*> as determined by CSPTRF.
93*> \endverbatim
94*>
95*> \param[in] B
96*> \verbatim
97*> B is COMPLEX array, dimension (LDB,NRHS)
98*> The right hand side matrix B.
99*> \endverbatim
100*>
101*> \param[in] LDB
102*> \verbatim
103*> LDB is INTEGER
104*> The leading dimension of the array B. LDB >= max(1,N).
105*> \endverbatim
106*>
107*> \param[in,out] X
108*> \verbatim
109*> X is COMPLEX array, dimension (LDX,NRHS)
110*> On entry, the solution matrix X, as computed by CSPTRS.
111*> On exit, the improved solution matrix X.
112*> \endverbatim
113*>
114*> \param[in] LDX
115*> \verbatim
116*> LDX is INTEGER
117*> The leading dimension of the array X. LDX >= max(1,N).
118*> \endverbatim
119*>
120*> \param[out] FERR
121*> \verbatim
122*> FERR is REAL array, dimension (NRHS)
123*> The estimated forward error bound for each solution vector
124*> X(j) (the j-th column of the solution matrix X).
125*> If XTRUE is the true solution corresponding to X(j), FERR(j)
126*> is an estimated upper bound for the magnitude of the largest
127*> element in (X(j) - XTRUE) divided by the magnitude of the
128*> largest element in X(j). The estimate is as reliable as
129*> the estimate for RCOND, and is almost always a slight
130*> overestimate of the true error.
131*> \endverbatim
132*>
133*> \param[out] BERR
134*> \verbatim
135*> BERR is REAL array, dimension (NRHS)
136*> The componentwise relative backward error of each solution
137*> vector X(j) (i.e., the smallest relative change in
138*> any element of A or B that makes X(j) an exact solution).
139*> \endverbatim
140*>
141*> \param[out] WORK
142*> \verbatim
143*> WORK is COMPLEX array, dimension (2*N)
144*> \endverbatim
145*>
146*> \param[out] RWORK
147*> \verbatim
148*> RWORK is REAL array, dimension (N)
149*> \endverbatim
150*>
151*> \param[out] INFO
152*> \verbatim
153*> INFO is INTEGER
154*> = 0: successful exit
155*> < 0: if INFO = -i, the i-th argument had an illegal value
156*> \endverbatim
157*
158*> \par Internal Parameters:
159* =========================
160*>
161*> \verbatim
162*> ITMAX is the maximum number of steps of iterative refinement.
163*> \endverbatim
164*
165* Authors:
166* ========
167*
168*> \author Univ. of Tennessee
169*> \author Univ. of California Berkeley
170*> \author Univ. of Colorado Denver
171*> \author NAG Ltd.
172*
173*> \ingroup hprfs
174*
175* =====================================================================
176 SUBROUTINE csprfs( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
177 $ LDX,
178 $ FERR, BERR, WORK, RWORK, INFO )
179*
180* -- LAPACK computational routine --
181* -- LAPACK is a software package provided by Univ. of Tennessee, --
182* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
183*
184* .. Scalar Arguments ..
185 CHARACTER UPLO
186 INTEGER INFO, LDB, LDX, N, NRHS
187* ..
188* .. Array Arguments ..
189 INTEGER IPIV( * )
190 REAL BERR( * ), FERR( * ), RWORK( * )
191 COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
192 $ x( ldx, * )
193* ..
194*
195* =====================================================================
196*
197* .. Parameters ..
198 INTEGER ITMAX
199 PARAMETER ( ITMAX = 5 )
200 REAL ZERO
201 parameter( zero = 0.0e+0 )
202 COMPLEX ONE
203 parameter( one = ( 1.0e+0, 0.0e+0 ) )
204 REAL TWO
205 parameter( two = 2.0e+0 )
206 REAL THREE
207 parameter( three = 3.0e+0 )
208* ..
209* .. Local Scalars ..
210 LOGICAL UPPER
211 INTEGER COUNT, I, IK, J, K, KASE, KK, NZ
212 REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
213 COMPLEX ZDUM
214* ..
215* .. Local Arrays ..
216 INTEGER ISAVE( 3 )
217* ..
218* .. External Subroutines ..
219 EXTERNAL caxpy, ccopy, clacn2, cspmv, csptrs,
220 $ xerbla
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC abs, aimag, max, real
224* ..
225* .. External Functions ..
226 LOGICAL LSAME
227 REAL SLAMCH
228 EXTERNAL lsame, slamch
229* ..
230* .. Statement Functions ..
231 REAL CABS1
232* ..
233* .. Statement Function definitions ..
234 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
235* ..
236* .. Executable Statements ..
237*
238* Test the input parameters.
239*
240 info = 0
241 upper = lsame( uplo, 'U' )
242 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
243 info = -1
244 ELSE IF( n.LT.0 ) THEN
245 info = -2
246 ELSE IF( nrhs.LT.0 ) THEN
247 info = -3
248 ELSE IF( ldb.LT.max( 1, n ) ) THEN
249 info = -8
250 ELSE IF( ldx.LT.max( 1, n ) ) THEN
251 info = -10
252 END IF
253 IF( info.NE.0 ) THEN
254 CALL xerbla( 'CSPRFS', -info )
255 RETURN
256 END IF
257*
258* Quick return if possible
259*
260 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
261 DO 10 j = 1, nrhs
262 ferr( j ) = zero
263 berr( j ) = zero
264 10 CONTINUE
265 RETURN
266 END IF
267*
268* NZ = maximum number of nonzero elements in each row of A, plus 1
269*
270 nz = n + 1
271 eps = slamch( 'Epsilon' )
272 safmin = slamch( 'Safe minimum' )
273 safe1 = real( nz )*safmin
274 safe2 = safe1 / eps
275*
276* Do for each right hand side
277*
278 DO 140 j = 1, nrhs
279*
280 count = 1
281 lstres = three
282 20 CONTINUE
283*
284* Loop until stopping criterion is satisfied.
285*
286* Compute residual R = B - A * X
287*
288 CALL ccopy( n, b( 1, j ), 1, work, 1 )
289 CALL cspmv( uplo, n, -one, ap, x( 1, j ), 1, one, work, 1 )
290*
291* Compute componentwise relative backward error from formula
292*
293* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
294*
295* where abs(Z) is the componentwise absolute value of the matrix
296* or vector Z. If the i-th component of the denominator is less
297* than SAFE2, then SAFE1 is added to the i-th components of the
298* numerator and denominator before dividing.
299*
300 DO 30 i = 1, n
301 rwork( i ) = cabs1( b( i, j ) )
302 30 CONTINUE
303*
304* Compute abs(A)*abs(X) + abs(B).
305*
306 kk = 1
307 IF( upper ) THEN
308 DO 50 k = 1, n
309 s = zero
310 xk = cabs1( x( k, j ) )
311 ik = kk
312 DO 40 i = 1, k - 1
313 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk
314 s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) )
315 ik = ik + 1
316 40 CONTINUE
317 rwork( k ) = rwork( k ) + cabs1( ap( kk+k-1 ) )*xk + s
318 kk = kk + k
319 50 CONTINUE
320 ELSE
321 DO 70 k = 1, n
322 s = zero
323 xk = cabs1( x( k, j ) )
324 rwork( k ) = rwork( k ) + cabs1( ap( kk ) )*xk
325 ik = kk + 1
326 DO 60 i = k + 1, n
327 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk
328 s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) )
329 ik = ik + 1
330 60 CONTINUE
331 rwork( k ) = rwork( k ) + s
332 kk = kk + ( n-k+1 )
333 70 CONTINUE
334 END IF
335 s = zero
336 DO 80 i = 1, n
337 IF( rwork( i ).GT.safe2 ) THEN
338 s = max( s, cabs1( work( i ) ) / rwork( i ) )
339 ELSE
340 s = max( s, ( cabs1( work( i ) )+safe1 ) /
341 $ ( rwork( i )+safe1 ) )
342 END IF
343 80 CONTINUE
344 berr( j ) = s
345*
346* Test stopping criterion. Continue iterating if
347* 1) The residual BERR(J) is larger than machine epsilon, and
348* 2) BERR(J) decreased by at least a factor of 2 during the
349* last iteration, and
350* 3) At most ITMAX iterations tried.
351*
352 IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
353 $ count.LE.itmax ) THEN
354*
355* Update solution and try again.
356*
357 CALL csptrs( uplo, n, 1, afp, ipiv, work, n, info )
358 CALL caxpy( n, one, work, 1, x( 1, j ), 1 )
359 lstres = berr( j )
360 count = count + 1
361 GO TO 20
362 END IF
363*
364* Bound error from formula
365*
366* norm(X - XTRUE) / norm(X) .le. FERR =
367* norm( abs(inv(A))*
368* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
369*
370* where
371* norm(Z) is the magnitude of the largest component of Z
372* inv(A) is the inverse of A
373* abs(Z) is the componentwise absolute value of the matrix or
374* vector Z
375* NZ is the maximum number of nonzeros in any row of A, plus 1
376* EPS is machine epsilon
377*
378* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
379* is incremented by SAFE1 if the i-th component of
380* abs(A)*abs(X) + abs(B) is less than SAFE2.
381*
382* Use CLACN2 to estimate the infinity-norm of the matrix
383* inv(A) * diag(W),
384* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
385*
386 DO 90 i = 1, n
387 IF( rwork( i ).GT.safe2 ) THEN
388 rwork( i ) = cabs1( work( i ) ) + real( nz )*
389 $ eps*rwork( i )
390 ELSE
391 rwork( i ) = cabs1( work( i ) ) + real( nz )*
392 $ eps*rwork( i ) + safe1
393 END IF
394 90 CONTINUE
395*
396 kase = 0
397 100 CONTINUE
398 CALL clacn2( n, work( n+1 ), work, ferr( j ), kase, isave )
399 IF( kase.NE.0 ) THEN
400 IF( kase.EQ.1 ) THEN
401*
402* Multiply by diag(W)*inv(A**T).
403*
404 CALL csptrs( uplo, n, 1, afp, ipiv, work, n, info )
405 DO 110 i = 1, n
406 work( i ) = rwork( i )*work( i )
407 110 CONTINUE
408 ELSE IF( kase.EQ.2 ) THEN
409*
410* Multiply by inv(A)*diag(W).
411*
412 DO 120 i = 1, n
413 work( i ) = rwork( i )*work( i )
414 120 CONTINUE
415 CALL csptrs( uplo, n, 1, afp, ipiv, work, n, info )
416 END IF
417 GO TO 100
418 END IF
419*
420* Normalize error.
421*
422 lstres = zero
423 DO 130 i = 1, n
424 lstres = max( lstres, cabs1( x( i, j ) ) )
425 130 CONTINUE
426 IF( lstres.NE.zero )
427 $ ferr( j ) = ferr( j ) / lstres
428*
429 140 CONTINUE
430*
431 RETURN
432*
433* End of CSPRFS
434*
435 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
CSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
Definition cspmv.f:149
subroutine csprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CSPRFS
Definition csprfs.f:179
subroutine csptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
CSPTRS
Definition csptrs.f:113
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131