113
  114
  115
  116
  117
  118
  119      CHARACTER          UPLO
  120      INTEGER            INFO, LDB, N, NRHS
  121
  122
  123      INTEGER            IPIV( * )
  124      COMPLEX            AP( * ), B( LDB, * )
  125
  126
  127
  128
  129
  130      COMPLEX            ONE
  131      parameter( one = ( 1.0e+0, 0.0e+0 ) )
  132
  133
  134      LOGICAL            UPPER
  135      INTEGER            J, K, KC, KP
  136      COMPLEX            AK, AKM1, AKM1K, BK, BKM1, DENOM
  137
  138
  139      LOGICAL            LSAME
  141
  142
  144
  145
  146      INTRINSIC          max
  147
  148
  149
  150      info = 0
  151      upper = 
lsame( uplo, 
'U' )
 
  152      IF( .NOT.upper .AND. .NOT.
lsame( uplo, 
'L' ) ) 
THEN 
  153         info = -1
  154      ELSE IF( n.LT.0 ) THEN
  155         info = -2
  156      ELSE IF( nrhs.LT.0 ) THEN
  157         info = -3
  158      ELSE IF( ldb.LT.max( 1, n ) ) THEN
  159         info = -7
  160      END IF
  161      IF( info.NE.0 ) THEN
  162         CALL xerbla( 
'CSPTRS', -info )
 
  163         RETURN
  164      END IF
  165
  166
  167
  168      IF( n.EQ.0 .OR. nrhs.EQ.0 )
  169     $   RETURN
  170
  171      IF( upper ) THEN
  172
  173
  174
  175
  176
  177
  178
  179
  180         k = n
  181         kc = n*( n+1 ) / 2 + 1
  182   10    CONTINUE
  183
  184
  185
  186         IF( k.LT.1 )
  187     $      GO TO 30
  188
  189         kc = kc - k
  190         IF( ipiv( k ).GT.0 ) THEN
  191
  192
  193
  194
  195
  196            kp = ipiv( k )
  197            IF( kp.NE.k )
  198     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  199
  200
  201
  202
  203            CALL cgeru( k-1, nrhs, -one, ap( kc ), 1, b( k, 1 ), ldb,
 
  204     $                  b( 1, 1 ), ldb )
  205
  206
  207
  208            CALL cscal( nrhs, one / ap( kc+k-1 ), b( k, 1 ), ldb )
 
  209            k = k - 1
  210         ELSE
  211
  212
  213
  214
  215
  216            kp = -ipiv( k )
  217            IF( kp.NE.k-1 )
  218     $         
CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
 
  219
  220
  221
  222
  223            CALL cgeru( k-2, nrhs, -one, ap( kc ), 1, b( k, 1 ), ldb,
 
  224     $                  b( 1, 1 ), ldb )
  225            CALL cgeru( k-2, nrhs, -one, ap( kc-( k-1 ) ), 1,
 
  226     $                  b( k-1, 1 ), ldb, b( 1, 1 ), ldb )
  227
  228
  229
  230            akm1k = ap( kc+k-2 )
  231            akm1 = ap( kc-1 ) / akm1k
  232            ak = ap( kc+k-1 ) / akm1k
  233            denom = akm1*ak - one
  234            DO 20 j = 1, nrhs
  235               bkm1 = b( k-1, j ) / akm1k
  236               bk = b( k, j ) / akm1k
  237               b( k-1, j ) = ( ak*bkm1-bk ) / denom
  238               b( k, j ) = ( akm1*bk-bkm1 ) / denom
  239   20       CONTINUE
  240            kc = kc - k + 1
  241            k = k - 2
  242         END IF
  243
  244         GO TO 10
  245   30    CONTINUE
  246
  247
  248
  249
  250
  251
  252         k = 1
  253         kc = 1
  254   40    CONTINUE
  255
  256
  257
  258         IF( k.GT.n )
  259     $      GO TO 50
  260
  261         IF( ipiv( k ).GT.0 ) THEN
  262
  263
  264
  265
  266
  267
  268            CALL cgemv( 
'Transpose', k-1, nrhs, -one, b, ldb,
 
  269     $                  ap( kc ),
  270     $                  1, one, b( k, 1 ), ldb )
  271
  272
  273
  274            kp = ipiv( k )
  275            IF( kp.NE.k )
  276     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  277            kc = kc + k
  278            k = k + 1
  279         ELSE
  280
  281
  282
  283
  284
  285
  286            CALL cgemv( 
'Transpose', k-1, nrhs, -one, b, ldb,
 
  287     $                  ap( kc ),
  288     $                  1, one, b( k, 1 ), ldb )
  289            CALL cgemv( 
'Transpose', k-1, nrhs, -one, b, ldb,
 
  290     $                  ap( kc+k ), 1, one, b( k+1, 1 ), ldb )
  291
  292
  293
  294            kp = -ipiv( k )
  295            IF( kp.NE.k )
  296     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  297            kc = kc + 2*k + 1
  298            k = k + 2
  299         END IF
  300
  301         GO TO 40
  302   50    CONTINUE
  303
  304      ELSE
  305
  306
  307
  308
  309
  310
  311
  312
  313         k = 1
  314         kc = 1
  315   60    CONTINUE
  316
  317
  318
  319         IF( k.GT.n )
  320     $      GO TO 80
  321
  322         IF( ipiv( k ).GT.0 ) THEN
  323
  324
  325
  326
  327
  328            kp = ipiv( k )
  329            IF( kp.NE.k )
  330     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  331
  332
  333
  334
  335            IF( k.LT.n )
  336     $         
CALL cgeru( n-k, nrhs, -one, ap( kc+1 ), 1, b( k, 1 ),
 
  337     $                     ldb, b( k+1, 1 ), ldb )
  338
  339
  340
  341            CALL cscal( nrhs, one / ap( kc ), b( k, 1 ), ldb )
 
  342            kc = kc + n - k + 1
  343            k = k + 1
  344         ELSE
  345
  346
  347
  348
  349
  350            kp = -ipiv( k )
  351            IF( kp.NE.k+1 )
  352     $         
CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
 
  353
  354
  355
  356
  357            IF( k.LT.n-1 ) THEN
  358               CALL cgeru( n-k-1, nrhs, -one, ap( kc+2 ), 1, b( k,
 
  359     $                     1 ),
  360     $                     ldb, b( k+2, 1 ), ldb )
  361               CALL cgeru( n-k-1, nrhs, -one, ap( kc+n-k+2 ), 1,
 
  362     $                     b( k+1, 1 ), ldb, b( k+2, 1 ), ldb )
  363            END IF
  364
  365
  366
  367            akm1k = ap( kc+1 )
  368            akm1 = ap( kc ) / akm1k
  369            ak = ap( kc+n-k+1 ) / akm1k
  370            denom = akm1*ak - one
  371            DO 70 j = 1, nrhs
  372               bkm1 = b( k, j ) / akm1k
  373               bk = b( k+1, j ) / akm1k
  374               b( k, j ) = ( ak*bkm1-bk ) / denom
  375               b( k+1, j ) = ( akm1*bk-bkm1 ) / denom
  376   70       CONTINUE
  377            kc = kc + 2*( n-k ) + 1
  378            k = k + 2
  379         END IF
  380
  381         GO TO 60
  382   80    CONTINUE
  383
  384
  385
  386
  387
  388
  389         k = n
  390         kc = n*( n+1 ) / 2 + 1
  391   90    CONTINUE
  392
  393
  394
  395         IF( k.LT.1 )
  396     $      GO TO 100
  397
  398         kc = kc - ( n-k+1 )
  399         IF( ipiv( k ).GT.0 ) THEN
  400
  401
  402
  403
  404
  405
  406            IF( k.LT.n )
  407     $         
CALL cgemv( 
'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
 
  408     $                     ldb, ap( kc+1 ), 1, one, b( k, 1 ), ldb )
  409
  410
  411
  412            kp = ipiv( k )
  413            IF( kp.NE.k )
  414     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  415            k = k - 1
  416         ELSE
  417
  418
  419
  420
  421
  422
  423            IF( k.LT.n ) THEN
  424               CALL cgemv( 
'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
 
  425     $                     ldb, ap( kc+1 ), 1, one, b( k, 1 ), ldb )
  426               CALL cgemv( 
'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
 
  427     $                     ldb, ap( kc-( n-k ) ), 1, one, b( k-1, 1 ),
  428     $                     ldb )
  429            END IF
  430
  431
  432
  433            kp = -ipiv( k )
  434            IF( kp.NE.k )
  435     $         
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
 
  436            kc = kc - ( n-k+2 )
  437            k = k - 2
  438         END IF
  439
  440         GO TO 90
  441  100    CONTINUE
  442      END IF
  443
  444      RETURN
  445
  446
  447
subroutine xerbla(srname, info)
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
subroutine cgeru(m, n, alpha, x, incx, y, incy, a, lda)
CGERU
logical function lsame(ca, cb)
LSAME
subroutine cscal(n, ca, cx, incx)
CSCAL
subroutine cswap(n, cx, incx, cy, incy)
CSWAP