LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cunmbr.f
Go to the documentation of this file.
1*> \brief \b CUNMBR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CUNMBR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmbr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmbr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmbr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
22* LDC, WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER SIDE, TRANS, VECT
26* INTEGER INFO, K, LDA, LDC, LWORK, M, N
27* ..
28* .. Array Arguments ..
29* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
30* $ WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C
40*> with
41*> SIDE = 'L' SIDE = 'R'
42*> TRANS = 'N': Q * C C * Q
43*> TRANS = 'C': Q**H * C C * Q**H
44*>
45*> If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C
46*> with
47*> SIDE = 'L' SIDE = 'R'
48*> TRANS = 'N': P * C C * P
49*> TRANS = 'C': P**H * C C * P**H
50*>
51*> Here Q and P**H are the unitary matrices determined by CGEBRD when
52*> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
53*> and P**H are defined as products of elementary reflectors H(i) and
54*> G(i) respectively.
55*>
56*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
57*> order of the unitary matrix Q or P**H that is applied.
58*>
59*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
60*> if nq >= k, Q = H(1) H(2) . . . H(k);
61*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
62*>
63*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
64*> if k < nq, P = G(1) G(2) . . . G(k);
65*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
66*> \endverbatim
67*
68* Arguments:
69* ==========
70*
71*> \param[in] VECT
72*> \verbatim
73*> VECT is CHARACTER*1
74*> = 'Q': apply Q or Q**H;
75*> = 'P': apply P or P**H.
76*> \endverbatim
77*>
78*> \param[in] SIDE
79*> \verbatim
80*> SIDE is CHARACTER*1
81*> = 'L': apply Q, Q**H, P or P**H from the Left;
82*> = 'R': apply Q, Q**H, P or P**H from the Right.
83*> \endverbatim
84*>
85*> \param[in] TRANS
86*> \verbatim
87*> TRANS is CHARACTER*1
88*> = 'N': No transpose, apply Q or P;
89*> = 'C': Conjugate transpose, apply Q**H or P**H.
90*> \endverbatim
91*>
92*> \param[in] M
93*> \verbatim
94*> M is INTEGER
95*> The number of rows of the matrix C. M >= 0.
96*> \endverbatim
97*>
98*> \param[in] N
99*> \verbatim
100*> N is INTEGER
101*> The number of columns of the matrix C. N >= 0.
102*> \endverbatim
103*>
104*> \param[in] K
105*> \verbatim
106*> K is INTEGER
107*> If VECT = 'Q', the number of columns in the original
108*> matrix reduced by CGEBRD.
109*> If VECT = 'P', the number of rows in the original
110*> matrix reduced by CGEBRD.
111*> K >= 0.
112*> \endverbatim
113*>
114*> \param[in] A
115*> \verbatim
116*> A is COMPLEX array, dimension
117*> (LDA,min(nq,K)) if VECT = 'Q'
118*> (LDA,nq) if VECT = 'P'
119*> The vectors which define the elementary reflectors H(i) and
120*> G(i), whose products determine the matrices Q and P, as
121*> returned by CGEBRD.
122*> \endverbatim
123*>
124*> \param[in] LDA
125*> \verbatim
126*> LDA is INTEGER
127*> The leading dimension of the array A.
128*> If VECT = 'Q', LDA >= max(1,nq);
129*> if VECT = 'P', LDA >= max(1,min(nq,K)).
130*> \endverbatim
131*>
132*> \param[in] TAU
133*> \verbatim
134*> TAU is COMPLEX array, dimension (min(nq,K))
135*> TAU(i) must contain the scalar factor of the elementary
136*> reflector H(i) or G(i) which determines Q or P, as returned
137*> by CGEBRD in the array argument TAUQ or TAUP.
138*> \endverbatim
139*>
140*> \param[in,out] C
141*> \verbatim
142*> C is COMPLEX array, dimension (LDC,N)
143*> On entry, the M-by-N matrix C.
144*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
145*> or P*C or P**H*C or C*P or C*P**H.
146*> \endverbatim
147*>
148*> \param[in] LDC
149*> \verbatim
150*> LDC is INTEGER
151*> The leading dimension of the array C. LDC >= max(1,M).
152*> \endverbatim
153*>
154*> \param[out] WORK
155*> \verbatim
156*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
157*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
158*> \endverbatim
159*>
160*> \param[in] LWORK
161*> \verbatim
162*> LWORK is INTEGER
163*> The dimension of the array WORK.
164*> If SIDE = 'L', LWORK >= max(1,N);
165*> if SIDE = 'R', LWORK >= max(1,M);
166*> if N = 0 or M = 0, LWORK >= 1.
167*> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
168*> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
169*> optimal blocksize. (NB = 0 if M = 0 or N = 0.)
170*>
171*> If LWORK = -1, then a workspace query is assumed; the routine
172*> only calculates the optimal size of the WORK array, returns
173*> this value as the first entry of the WORK array, and no error
174*> message related to LWORK is issued by XERBLA.
175*> \endverbatim
176*>
177*> \param[out] INFO
178*> \verbatim
179*> INFO is INTEGER
180*> = 0: successful exit
181*> < 0: if INFO = -i, the i-th argument had an illegal value
182*> \endverbatim
183*
184* Authors:
185* ========
186*
187*> \author Univ. of Tennessee
188*> \author Univ. of California Berkeley
189*> \author Univ. of Colorado Denver
190*> \author NAG Ltd.
191*
192*> \ingroup complexOTHERcomputational
193*
194* =====================================================================
195 SUBROUTINE cunmbr( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
196 $ LDC, WORK, LWORK, INFO )
197*
198* -- LAPACK computational routine --
199* -- LAPACK is a software package provided by Univ. of Tennessee, --
200* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201*
202* .. Scalar Arguments ..
203 CHARACTER SIDE, TRANS, VECT
204 INTEGER INFO, K, LDA, LDC, LWORK, M, N
205* ..
206* .. Array Arguments ..
207 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
208 $ work( * )
209* ..
210*
211* =====================================================================
212*
213* .. Local Scalars ..
214 LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
215 CHARACTER TRANST
216 INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
217* ..
218* .. External Functions ..
219 LOGICAL LSAME
220 INTEGER ILAENV
221 EXTERNAL ilaenv, lsame
222* ..
223* .. External Subroutines ..
224 EXTERNAL cunmlq, cunmqr, xerbla
225* ..
226* .. Intrinsic Functions ..
227 INTRINSIC max, min
228* ..
229* .. Executable Statements ..
230*
231* Test the input arguments
232*
233 info = 0
234 applyq = lsame( vect, 'Q' )
235 left = lsame( side, 'L' )
236 notran = lsame( trans, 'N' )
237 lquery = ( lwork.EQ.-1 )
238*
239* NQ is the order of Q or P and NW is the minimum dimension of WORK
240*
241 IF( left ) THEN
242 nq = m
243 nw = max( 1, n )
244 ELSE
245 nq = n
246 nw = max( 1, m )
247 END IF
248 IF( .NOT.applyq .AND. .NOT.lsame( vect, 'P' ) ) THEN
249 info = -1
250 ELSE IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
251 info = -2
252 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
253 info = -3
254 ELSE IF( m.LT.0 ) THEN
255 info = -4
256 ELSE IF( n.LT.0 ) THEN
257 info = -5
258 ELSE IF( k.LT.0 ) THEN
259 info = -6
260 ELSE IF( ( applyq .AND. lda.LT.max( 1, nq ) ) .OR.
261 $ ( .NOT.applyq .AND. lda.LT.max( 1, min( nq, k ) ) ) )
262 $ THEN
263 info = -8
264 ELSE IF( ldc.LT.max( 1, m ) ) THEN
265 info = -11
266 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
267 info = -13
268 END IF
269*
270 IF( info.EQ.0 ) THEN
271 IF( m.GT.0 .AND. n.GT.0 ) THEN
272 IF( applyq ) THEN
273 IF( left ) THEN
274 nb = ilaenv( 1, 'CUNMQR', side // trans, m-1, n, m-1,
275 $ -1 )
276 ELSE
277 nb = ilaenv( 1, 'CUNMQR', side // trans, m, n-1, n-1,
278 $ -1 )
279 END IF
280 ELSE
281 IF( left ) THEN
282 nb = ilaenv( 1, 'CUNMLQ', side // trans, m-1, n, m-1,
283 $ -1 )
284 ELSE
285 nb = ilaenv( 1, 'CUNMLQ', side // trans, m, n-1, n-1,
286 $ -1 )
287 END IF
288 END IF
289 lwkopt = nw*nb
290 ELSE
291 lwkopt = 1
292 END IF
293 work( 1 ) = lwkopt
294 END IF
295*
296 IF( info.NE.0 ) THEN
297 CALL xerbla( 'CUNMBR', -info )
298 RETURN
299 ELSE IF( lquery ) THEN
300 RETURN
301 END IF
302*
303* Quick return if possible
304*
305 IF( m.EQ.0 .OR. n.EQ.0 )
306 $ RETURN
307*
308 IF( applyq ) THEN
309*
310* Apply Q
311*
312 IF( nq.GE.k ) THEN
313*
314* Q was determined by a call to CGEBRD with nq >= k
315*
316 CALL cunmqr( side, trans, m, n, k, a, lda, tau, c, ldc,
317 $ work, lwork, iinfo )
318 ELSE IF( nq.GT.1 ) THEN
319*
320* Q was determined by a call to CGEBRD with nq < k
321*
322 IF( left ) THEN
323 mi = m - 1
324 ni = n
325 i1 = 2
326 i2 = 1
327 ELSE
328 mi = m
329 ni = n - 1
330 i1 = 1
331 i2 = 2
332 END IF
333 CALL cunmqr( side, trans, mi, ni, nq-1, a( 2, 1 ), lda, tau,
334 $ c( i1, i2 ), ldc, work, lwork, iinfo )
335 END IF
336 ELSE
337*
338* Apply P
339*
340 IF( notran ) THEN
341 transt = 'C'
342 ELSE
343 transt = 'N'
344 END IF
345 IF( nq.GT.k ) THEN
346*
347* P was determined by a call to CGEBRD with nq > k
348*
349 CALL cunmlq( side, transt, m, n, k, a, lda, tau, c, ldc,
350 $ work, lwork, iinfo )
351 ELSE IF( nq.GT.1 ) THEN
352*
353* P was determined by a call to CGEBRD with nq <= k
354*
355 IF( left ) THEN
356 mi = m - 1
357 ni = n
358 i1 = 2
359 i2 = 1
360 ELSE
361 mi = m
362 ni = n - 1
363 i1 = 1
364 i2 = 2
365 END IF
366 CALL cunmlq( side, transt, mi, ni, nq-1, a( 1, 2 ), lda,
367 $ tau, c( i1, i2 ), ldc, work, lwork, iinfo )
368 END IF
369 END IF
370 work( 1 ) = lwkopt
371 RETURN
372*
373* End of CUNMBR
374*
375 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cunmbr(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMBR
Definition: cunmbr.f:197
subroutine cunmlq(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMLQ
Definition: cunmlq.f:168
subroutine cunmqr(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMQR
Definition: cunmqr.f:168