LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dorgl2()

subroutine dorgl2 ( integer m,
integer n,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer info )

DORGL2

Download DORGL2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DORGL2 generates an m by n real matrix Q with orthonormal rows,
!> which is defined as the first m rows of a product of k elementary
!> reflectors of order n
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by DGELQF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. N >= M.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. M >= K >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the i-th row must contain the vector which defines
!>          the elementary reflector H(i), for i = 1,2,...,k, as returned
!>          by DGELQF in the first k rows of its array argument A.
!>          On exit, the m-by-n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGELQF.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 110 of file dorgl2.f.

111*
112* -- LAPACK computational routine --
113* -- LAPACK is a software package provided by Univ. of Tennessee, --
114* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
115*
116* .. Scalar Arguments ..
117 INTEGER INFO, K, LDA, M, N
118* ..
119* .. Array Arguments ..
120 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
121* ..
122*
123* =====================================================================
124*
125* .. Parameters ..
126 DOUBLE PRECISION ONE, ZERO
127 parameter( one = 1.0d+0, zero = 0.0d+0 )
128* ..
129* .. Local Scalars ..
130 INTEGER I, J, L
131* ..
132* .. External Subroutines ..
133 EXTERNAL dlarf1f, dscal, xerbla
134* ..
135* .. Intrinsic Functions ..
136 INTRINSIC max
137* ..
138* .. Executable Statements ..
139*
140* Test the input arguments
141*
142 info = 0
143 IF( m.LT.0 ) THEN
144 info = -1
145 ELSE IF( n.LT.m ) THEN
146 info = -2
147 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
148 info = -3
149 ELSE IF( lda.LT.max( 1, m ) ) THEN
150 info = -5
151 END IF
152 IF( info.NE.0 ) THEN
153 CALL xerbla( 'DORGL2', -info )
154 RETURN
155 END IF
156*
157* Quick return if possible
158*
159 IF( m.LE.0 )
160 $ RETURN
161*
162 IF( k.LT.m ) THEN
163*
164* Initialise rows k+1:m to rows of the unit matrix
165*
166 DO 20 j = 1, n
167 DO 10 l = k + 1, m
168 a( l, j ) = zero
169 10 CONTINUE
170 IF( j.GT.k .AND. j.LE.m )
171 $ a( j, j ) = one
172 20 CONTINUE
173 END IF
174*
175 DO 40 i = k, 1, -1
176*
177* Apply H(i) to A(i:m,i:n) from the right
178*
179 IF( i.LT.n ) THEN
180 IF( i.LT.m ) THEN
181 CALL dlarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
182 $ tau( i ), a( i+1, i ), lda, work )
183 END IF
184 CALL dscal( n-i, -tau( i ), a( i, i+1 ), lda )
185 END IF
186 a( i, i ) = one - tau( i )
187*
188* Set A(i,1:i-1) to zero
189*
190 DO 30 l = 1, i - 1
191 a( i, l ) = zero
192 30 CONTINUE
193 40 CONTINUE
194 RETURN
195*
196* End of DORGL2
197*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarf1f(side, m, n, v, incv, tau, c, ldc, work)
DLARF1F applies an elementary reflector to a general rectangular
Definition dlarf1f.f:157
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: