LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dorgl2()

subroutine dorgl2 ( integer  m,
integer  n,
integer  k,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  tau,
double precision, dimension( * )  work,
integer  info 
)

DORGL2

Download DORGL2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DORGL2 generates an m by n real matrix Q with orthonormal rows,
 which is defined as the first m rows of a product of k elementary
 reflectors of order n

       Q  =  H(k) . . . H(2) H(1)

 as returned by DGELQF.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the i-th row must contain the vector which defines
          the elementary reflector H(i), for i = 1,2,...,k, as returned
          by DGELQF in the first k rows of its array argument A.
          On exit, the m-by-n matrix Q.
[in]LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
[in]TAU
          TAU is DOUBLE PRECISION array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by DGELQF.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (M)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 112 of file dorgl2.f.

113*
114* -- LAPACK computational routine --
115* -- LAPACK is a software package provided by Univ. of Tennessee, --
116* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117*
118* .. Scalar Arguments ..
119 INTEGER INFO, K, LDA, M, N
120* ..
121* .. Array Arguments ..
122 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
123* ..
124*
125* =====================================================================
126*
127* .. Parameters ..
128 DOUBLE PRECISION ONE, ZERO
129 parameter( one = 1.0d+0, zero = 0.0d+0 )
130* ..
131* .. Local Scalars ..
132 INTEGER I, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL dlarf, dscal, xerbla
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'DORGL2', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( m.LE.0 )
162 $ RETURN
163*
164 IF( k.LT.m ) THEN
165*
166* Initialise rows k+1:m to rows of the unit matrix
167*
168 DO 20 j = 1, n
169 DO 10 l = k + 1, m
170 a( l, j ) = zero
171 10 CONTINUE
172 IF( j.GT.k .AND. j.LE.m )
173 $ a( j, j ) = one
174 20 CONTINUE
175 END IF
176*
177 DO 40 i = k, 1, -1
178*
179* Apply H(i) to A(i:m,i:n) from the right
180*
181 IF( i.LT.n ) THEN
182 IF( i.LT.m ) THEN
183 a( i, i ) = one
184 CALL dlarf( 'Right', m-i, n-i+1, a( i, i ), lda,
185 $ tau( i ), a( i+1, i ), lda, work )
186 END IF
187 CALL dscal( n-i, -tau( i ), a( i, i+1 ), lda )
188 END IF
189 a( i, i ) = one - tau( i )
190*
191* Set A(i,1:i-1) to zero
192*
193 DO 30 l = 1, i - 1
194 a( i, l ) = zero
195 30 CONTINUE
196 40 CONTINUE
197 RETURN
198*
199* End of DORGL2
200*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarf(side, m, n, v, incv, tau, c, ldc, work)
DLARF applies an elementary reflector to a general rectangular matrix.
Definition dlarf.f:124
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: