![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zgegs | ( | character | jobvsl, |
character | jobvsr, | ||
integer | n, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
complex*16, dimension( * ) | alpha, | ||
complex*16, dimension( * ) | beta, | ||
complex*16, dimension( ldvsl, * ) | vsl, | ||
integer | ldvsl, | ||
complex*16, dimension( ldvsr, * ) | vsr, | ||
integer | ldvsr, | ||
complex*16, dimension( * ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
integer | info ) |
ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)
Download ZGEGS + dependencies [TGZ] [ZIP] [TXT]
!> !> This routine is deprecated and has been replaced by routine ZGGES. !> !> ZGEGS computes the eigenvalues, Schur form, and, optionally, the !> left and or/right Schur vectors of a complex matrix pair (A,B). !> Given two square matrices A and B, the generalized Schur !> factorization has the form !> !> A = Q*S*Z**H, B = Q*T*Z**H !> !> where Q and Z are unitary matrices and S and T are upper triangular. !> The columns of Q are the left Schur vectors !> and the columns of Z are the right Schur vectors. !> !> If only the eigenvalues of (A,B) are needed, the driver routine !> ZGEGV should be used instead. See ZGEGV for a description of the !> eigenvalues of the generalized nonsymmetric eigenvalue problem !> (GNEP). !>
[in] | JOBVSL | !> JOBVSL is CHARACTER*1 !> = 'N': do not compute the left Schur vectors; !> = 'V': compute the left Schur vectors (returned in VSL). !> |
[in] | JOBVSR | !> JOBVSR is CHARACTER*1 !> = 'N': do not compute the right Schur vectors; !> = 'V': compute the right Schur vectors (returned in VSR). !> |
[in] | N | !> N is INTEGER !> The order of the matrices A, B, VSL, and VSR. N >= 0. !> |
[in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the matrix A. !> On exit, the upper triangular matrix S from the generalized !> Schur factorization. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of A. LDA >= max(1,N). !> |
[in,out] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> On entry, the matrix B. !> On exit, the upper triangular matrix T from the generalized !> Schur factorization. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of B. LDB >= max(1,N). !> |
[out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (N) !> The complex scalars alpha that define the eigenvalues of !> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur !> form of A. !> |
[out] | BETA | !> BETA is COMPLEX*16 array, dimension (N) !> The non-negative real scalars beta that define the !> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element !> of the triangular factor T. !> !> Together, the quantities alpha = ALPHA(j) and beta = BETA(j) !> represent the j-th eigenvalue of the matrix pair (A,B), in !> one of the forms lambda = alpha/beta or mu = beta/alpha. !> Since either lambda or mu may overflow, they should not, !> in general, be computed. !> |
[out] | VSL | !> VSL is COMPLEX*16 array, dimension (LDVSL,N) !> If JOBVSL = 'V', the matrix of left Schur vectors Q. !> Not referenced if JOBVSL = 'N'. !> |
[in] | LDVSL | !> LDVSL is INTEGER !> The leading dimension of the matrix VSL. LDVSL >= 1, and !> if JOBVSL = 'V', LDVSL >= N. !> |
[out] | VSR | !> VSR is COMPLEX*16 array, dimension (LDVSR,N) !> If JOBVSR = 'V', the matrix of right Schur vectors Z. !> Not referenced if JOBVSR = 'N'. !> |
[in] | LDVSR | !> LDVSR is INTEGER !> The leading dimension of the matrix VSR. LDVSR >= 1, and !> if JOBVSR = 'V', LDVSR >= N. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,2*N). !> For good performance, LWORK must generally be larger. !> To compute the optimal value of LWORK, call ILAENV to get !> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute: !> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; !> the optimal LWORK is N*(NB+1). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (3*N) !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> =1,...,N: !> The QZ iteration failed. (A,B) are not in Schur !> form, but ALPHA(j) and BETA(j) should be correct for !> j=INFO+1,...,N. !> > N: errors that usually indicate LAPACK problems: !> =N+1: error return from ZGGBAL !> =N+2: error return from ZGEQRF !> =N+3: error return from ZUNMQR !> =N+4: error return from ZUNGQR !> =N+5: error return from ZGGHRD !> =N+6: error return from ZHGEQZ (other than failed !> iteration) !> =N+7: error return from ZGGBAK (computing VSL) !> =N+8: error return from ZGGBAK (computing VSR) !> =N+9: error return from ZLASCL (various places) !> |
Definition at line 220 of file zgegs.f.