LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zstt21 | ( | integer | n, |
integer | kband, | ||
double precision, dimension( * ) | ad, | ||
double precision, dimension( * ) | ae, | ||
double precision, dimension( * ) | sd, | ||
double precision, dimension( * ) | se, | ||
complex*16, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
complex*16, dimension( * ) | work, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( 2 ) | result ) |
ZSTT21
!> !> ZSTT21 checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is real symmetric tridiagonal, !> U is unitary, and S is real and diagonal (if KBAND=0) or symmetric !> tridiagonal (if KBAND=1). Two tests are performed: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) !> !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
[in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZSTT21 does nothing. !> It must be at least zero. !> |
[in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
[in] | AD | !> AD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be real symmetric tridiagonal. !> |
[in] | AE | !> AE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be symmetric tridiagonal. AE(1) is the (1,2) !> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. !> |
[in] | SD | !> SD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the real (symmetric tri-) diagonal matrix S. !> |
[in] | SE | !> SE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the !> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) !> element, etc. !> |
[in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> The unitary matrix in the decomposition. !> |
[in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (N**2) !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. !> |
Definition at line 131 of file zstt21.f.