112 SUBROUTINE cptts2( IUPLO, N, NRHS, D, E, B, LDB )
119 INTEGER IUPLO, LDB, N, NRHS
123 COMPLEX B( LDB, * ), E( * )
143 $
CALL csscal( nrhs, 1. / d( 1 ), b, ldb )
147 IF( iuplo.EQ.1 )
THEN
159 b( i, j ) = b( i, j ) - b( i-1, j )*conjg( e( i-1 ) )
165 b( i, j ) = b( i, j ) / d( i )
167 DO 30 i = n - 1, 1, -1
168 b( i, j ) = b( i, j ) - b( i+1, j )*e( i )
180 b( i, j ) = b( i, j ) - b( i-1, j )*conjg( e( i-1 ) )
185 b( n, j ) = b( n, j ) / d( n )
186 DO 50 i = n - 1, 1, -1
187 b( i, j ) = b( i, j ) / d( i ) - b( i+1, j )*e( i )
203 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
209 b( i, j ) = b( i, j ) / d( i )
211 DO 90 i = n - 1, 1, -1
212 b( i, j ) = b( i, j ) - b( i+1, j )*conjg( e( i ) )
224 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
229 b( n, j ) = b( n, j ) / d( n )
230 DO 110 i = n - 1, 1, -1
231 b( i, j ) = b( i, j ) / d( i ) -
232 $ b( i+1, j )*conjg( e( i ) )
subroutine cptts2(iuplo, n, nrhs, d, e, b, ldb)
CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf...
subroutine csscal(n, sa, cx, incx)
CSSCAL