LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dormql.f
Go to the documentation of this file.
1*> \brief \b DORMQL
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DORMQL + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormql.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormql.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormql.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
20* WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS
24* INTEGER INFO, K, LDA, LDC, LWORK, M, N
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DORMQL overwrites the general real M-by-N matrix C with
37*>
38*> SIDE = 'L' SIDE = 'R'
39*> TRANS = 'N': Q * C C * Q
40*> TRANS = 'T': Q**T * C C * Q**T
41*>
42*> where Q is a real orthogonal matrix defined as the product of k
43*> elementary reflectors
44*>
45*> Q = H(k) . . . H(2) H(1)
46*>
47*> as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
48*> if SIDE = 'R'.
49*> \endverbatim
50*
51* Arguments:
52* ==========
53*
54*> \param[in] SIDE
55*> \verbatim
56*> SIDE is CHARACTER*1
57*> = 'L': apply Q or Q**T from the Left;
58*> = 'R': apply Q or Q**T from the Right.
59*> \endverbatim
60*>
61*> \param[in] TRANS
62*> \verbatim
63*> TRANS is CHARACTER*1
64*> = 'N': No transpose, apply Q;
65*> = 'T': Transpose, apply Q**T.
66*> \endverbatim
67*>
68*> \param[in] M
69*> \verbatim
70*> M is INTEGER
71*> The number of rows of the matrix C. M >= 0.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The number of columns of the matrix C. N >= 0.
78*> \endverbatim
79*>
80*> \param[in] K
81*> \verbatim
82*> K is INTEGER
83*> The number of elementary reflectors whose product defines
84*> the matrix Q.
85*> If SIDE = 'L', M >= K >= 0;
86*> if SIDE = 'R', N >= K >= 0.
87*> \endverbatim
88*>
89*> \param[in] A
90*> \verbatim
91*> A is DOUBLE PRECISION array, dimension (LDA,K)
92*> The i-th column must contain the vector which defines the
93*> elementary reflector H(i), for i = 1,2,...,k, as returned by
94*> DGEQLF in the last k columns of its array argument A.
95*> \endverbatim
96*>
97*> \param[in] LDA
98*> \verbatim
99*> LDA is INTEGER
100*> The leading dimension of the array A.
101*> If SIDE = 'L', LDA >= max(1,M);
102*> if SIDE = 'R', LDA >= max(1,N).
103*> \endverbatim
104*>
105*> \param[in] TAU
106*> \verbatim
107*> TAU is DOUBLE PRECISION array, dimension (K)
108*> TAU(i) must contain the scalar factor of the elementary
109*> reflector H(i), as returned by DGEQLF.
110*> \endverbatim
111*>
112*> \param[in,out] C
113*> \verbatim
114*> C is DOUBLE PRECISION array, dimension (LDC,N)
115*> On entry, the M-by-N matrix C.
116*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
117*> \endverbatim
118*>
119*> \param[in] LDC
120*> \verbatim
121*> LDC is INTEGER
122*> The leading dimension of the array C. LDC >= max(1,M).
123*> \endverbatim
124*>
125*> \param[out] WORK
126*> \verbatim
127*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
128*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
129*> \endverbatim
130*>
131*> \param[in] LWORK
132*> \verbatim
133*> LWORK is INTEGER
134*> The dimension of the array WORK.
135*> If SIDE = 'L', LWORK >= max(1,N);
136*> if SIDE = 'R', LWORK >= max(1,M).
137*> For good performance, LWORK should generally be larger.
138*>
139*> If LWORK = -1, then a workspace query is assumed; the routine
140*> only calculates the optimal size of the WORK array, returns
141*> this value as the first entry of the WORK array, and no error
142*> message related to LWORK is issued by XERBLA.
143*> \endverbatim
144*>
145*> \param[out] INFO
146*> \verbatim
147*> INFO is INTEGER
148*> = 0: successful exit
149*> < 0: if INFO = -i, the i-th argument had an illegal value
150*> \endverbatim
151*
152* Authors:
153* ========
154*
155*> \author Univ. of Tennessee
156*> \author Univ. of California Berkeley
157*> \author Univ. of Colorado Denver
158*> \author NAG Ltd.
159*
160*> \ingroup unmql
161*
162* =====================================================================
163 SUBROUTINE dormql( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
164 $ WORK, LWORK, INFO )
165*
166* -- LAPACK computational routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER SIDE, TRANS
172 INTEGER INFO, K, LDA, LDC, LWORK, M, N
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184* ..
185* .. Local Scalars ..
186 LOGICAL LEFT, LQUERY, NOTRAN
187 INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
188 $ mi, nb, nbmin, ni, nq, nw
189* ..
190* .. External Functions ..
191 LOGICAL LSAME
192 INTEGER ILAENV
193 EXTERNAL lsame, ilaenv
194* ..
195* .. External Subroutines ..
196 EXTERNAL dlarfb, dlarft, dorm2l, xerbla
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC max, min
200* ..
201* .. Executable Statements ..
202*
203* Test the input arguments
204*
205 info = 0
206 left = lsame( side, 'L' )
207 notran = lsame( trans, 'N' )
208 lquery = ( lwork.EQ.-1 )
209*
210* NQ is the order of Q and NW is the minimum dimension of WORK
211*
212 IF( left ) THEN
213 nq = m
214 nw = max( 1, n )
215 ELSE
216 nq = n
217 nw = max( 1, m )
218 END IF
219 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
220 info = -1
221 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
222 info = -2
223 ELSE IF( m.LT.0 ) THEN
224 info = -3
225 ELSE IF( n.LT.0 ) THEN
226 info = -4
227 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
228 info = -5
229 ELSE IF( lda.LT.max( 1, nq ) ) THEN
230 info = -7
231 ELSE IF( ldc.LT.max( 1, m ) ) THEN
232 info = -10
233 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
234 info = -12
235 END IF
236*
237 IF( info.EQ.0 ) THEN
238*
239* Compute the workspace requirements
240*
241 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
242 lwkopt = 1
243 ELSE
244 nb = min( nbmax, ilaenv( 1, 'DORMQL', side // trans, m,
245 $ n,
246 $ k, -1 ) )
247 lwkopt = nw*nb + tsize
248 END IF
249 work( 1 ) = lwkopt
250 END IF
251*
252 IF( info.NE.0 ) THEN
253 CALL xerbla( 'DORMQL', -info )
254 RETURN
255 ELSE IF( lquery ) THEN
256 RETURN
257 END IF
258*
259* Quick return if possible
260*
261 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
262 RETURN
263 END IF
264*
265 nbmin = 2
266 ldwork = nw
267 IF( nb.GT.1 .AND. nb.LT.k ) THEN
268 IF( lwork.LT.lwkopt ) THEN
269 nb = (lwork-tsize) / ldwork
270 nbmin = max( 2, ilaenv( 2, 'DORMQL', side // trans, m, n,
271 $ k,
272 $ -1 ) )
273 END IF
274 END IF
275*
276 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
277*
278* Use unblocked code
279*
280 CALL dorm2l( side, trans, m, n, k, a, lda, tau, c, ldc,
281 $ work,
282 $ iinfo )
283 ELSE
284*
285* Use blocked code
286*
287 iwt = 1 + nw*nb
288 IF( ( left .AND. notran ) .OR.
289 $ ( .NOT.left .AND. .NOT.notran ) ) THEN
290 i1 = 1
291 i2 = k
292 i3 = nb
293 ELSE
294 i1 = ( ( k-1 ) / nb )*nb + 1
295 i2 = 1
296 i3 = -nb
297 END IF
298*
299 IF( left ) THEN
300 ni = n
301 ELSE
302 mi = m
303 END IF
304*
305 DO 10 i = i1, i2, i3
306 ib = min( nb, k-i+1 )
307*
308* Form the triangular factor of the block reflector
309* H = H(i+ib-1) . . . H(i+1) H(i)
310*
311 CALL dlarft( 'Backward', 'Columnwise', nq-k+i+ib-1, ib,
312 $ a( 1, i ), lda, tau( i ), work( iwt ), ldt )
313 IF( left ) THEN
314*
315* H or H**T is applied to C(1:m-k+i+ib-1,1:n)
316*
317 mi = m - k + i + ib - 1
318 ELSE
319*
320* H or H**T is applied to C(1:m,1:n-k+i+ib-1)
321*
322 ni = n - k + i + ib - 1
323 END IF
324*
325* Apply H or H**T
326*
327 CALL dlarfb( side, trans, 'Backward', 'Columnwise', mi,
328 $ ni,
329 $ ib, a( 1, i ), lda, work( iwt ), ldt, c, ldc,
330 $ work, ldwork )
331 10 CONTINUE
332 END IF
333 work( 1 ) = lwkopt
334 RETURN
335*
336* End of DORMQL
337*
338 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
subroutine dorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORM2L multiplies a general matrix by the orthogonal matrix from a QL factorization determined by sge...
Definition dorm2l.f:156
subroutine dormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQL
Definition dormql.f:165