LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zqrt17()

double precision function zqrt17 ( character trans,
integer iresid,
integer m,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldx, * ) x,
integer ldx,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldb, * ) c,
complex*16, dimension( lwork ) work,
integer lwork )

ZQRT17

Purpose:
!>
!> ZQRT17 computes the ratio
!>
!>    norm(R**H * op(A)) / ( norm(A) * alpha * max(M,N,NRHS) * EPS ),
!>
!> where R = B - op(A)*X, op(A) is A or A**H, depending on TRANS, EPS
!> is the machine epsilon, and
!>
!>    alpha = norm(B) if IRESID = 1 (zero-residual problem)
!>    alpha = norm(R) if IRESID = 2 (otherwise).
!>
!> The norm used is the 1-norm.
!> 
Parameters
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies whether or not the transpose of A is used.
!>          = 'N':  No transpose, op(A) = A.
!>          = 'C':  Conjugate transpose, op(A) = A**H.
!> 
[in]IRESID
!>          IRESID is INTEGER
!>          IRESID = 1 indicates zero-residual problem.
!>          IRESID = 2 indicates non-zero residual.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.
!>          If TRANS = 'N', the number of rows of the matrix B.
!>          If TRANS = 'C', the number of rows of the matrix X.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix  A.
!>          If TRANS = 'N', the number of rows of the matrix X.
!>          If TRANS = 'C', the number of rows of the matrix B.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X and B.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The m-by-n matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= M.
!> 
[in]X
!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>          If TRANS = 'N', the n-by-nrhs matrix X.
!>          If TRANS = 'C', the m-by-nrhs matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.
!>          If TRANS = 'N', LDX >= N.
!>          If TRANS = 'C', LDX >= M.
!> 
[in]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          If TRANS = 'N', the m-by-nrhs matrix B.
!>          If TRANS = 'C', the n-by-nrhs matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          If TRANS = 'N', LDB >= M.
!>          If TRANS = 'C', LDB >= N.
!> 
[out]C
!>          C is COMPLEX*16 array, dimension (LDB,NRHS)
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= NRHS*(M+N).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 151 of file zqrt17.f.

153*
154* -- LAPACK test routine --
155* -- LAPACK is a software package provided by Univ. of Tennessee, --
156* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157*
158* .. Scalar Arguments ..
159 CHARACTER TRANS
160 INTEGER IRESID, LDA, LDB, LDX, LWORK, M, N, NRHS
161* ..
162* .. Array Arguments ..
163 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDB, * ),
164 $ WORK( LWORK ), X( LDX, * )
165* ..
166*
167* =====================================================================
168*
169* .. Parameters ..
170 DOUBLE PRECISION ZERO, ONE
171 parameter( zero = 0.0d0, one = 1.0d0 )
172* ..
173* .. Local Scalars ..
174 INTEGER INFO, ISCL, NCOLS, NROWS
175 DOUBLE PRECISION ERR, NORMA, NORMB, NORMRS, SMLNUM
176* ..
177* .. Local Arrays ..
178 DOUBLE PRECISION RWORK( 1 )
179* ..
180* .. External Functions ..
181 LOGICAL LSAME
182 DOUBLE PRECISION DLAMCH, ZLANGE
183 EXTERNAL lsame, dlamch, zlange
184* ..
185* .. External Subroutines ..
186 EXTERNAL xerbla, zgemm, zlacpy, zlascl
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC dble, dcmplx, max
190* ..
191* .. Executable Statements ..
192*
193 zqrt17 = zero
194*
195 IF( lsame( trans, 'N' ) ) THEN
196 nrows = m
197 ncols = n
198 ELSE IF( lsame( trans, 'C' ) ) THEN
199 nrows = n
200 ncols = m
201 ELSE
202 CALL xerbla( 'ZQRT17', 1 )
203 RETURN
204 END IF
205*
206 IF( lwork.LT.ncols*nrhs ) THEN
207 CALL xerbla( 'ZQRT17', 13 )
208 RETURN
209 END IF
210*
211 IF( m.LE.0 .OR. n.LE.0 .OR. nrhs.LE.0 )
212 $ RETURN
213*
214 norma = zlange( 'One-norm', m, n, a, lda, rwork )
215 smlnum = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
216 iscl = 0
217*
218* compute residual and scale it
219*
220 CALL zlacpy( 'All', nrows, nrhs, b, ldb, c, ldb )
221 CALL zgemm( trans, 'No transpose', nrows, nrhs, ncols,
222 $ dcmplx( -one ), a, lda, x, ldx, dcmplx( one ), c,
223 $ ldb )
224 normrs = zlange( 'Max', nrows, nrhs, c, ldb, rwork )
225 IF( normrs.GT.smlnum ) THEN
226 iscl = 1
227 CALL zlascl( 'General', 0, 0, normrs, one, nrows, nrhs, c, ldb,
228 $ info )
229 END IF
230*
231* compute R**H * op(A)
232*
233 CALL zgemm( 'Conjugate transpose', trans, nrhs, ncols, nrows,
234 $ dcmplx( one ), c, ldb, a, lda, dcmplx( zero ), work,
235 $ nrhs )
236*
237* compute and properly scale error
238*
239 err = zlange( 'One-norm', nrhs, ncols, work, nrhs, rwork )
240 IF( norma.NE.zero )
241 $ err = err / norma
242*
243 IF( iscl.EQ.1 )
244 $ err = err*normrs
245*
246 IF( iresid.EQ.1 ) THEN
247 normb = zlange( 'One-norm', nrows, nrhs, b, ldb, rwork )
248 IF( normb.NE.zero )
249 $ err = err / normb
250 ELSE
251 IF( normrs.NE.zero )
252 $ err = err / normrs
253 END IF
254*
255 zqrt17 = err / ( dlamch( 'Epsilon' )*dble( max( m, n, nrhs ) ) )
256 RETURN
257*
258* End of ZQRT17
259*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:113
subroutine zlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition zlascl.f:142
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
double precision function zqrt17(trans, iresid, m, n, nrhs, a, lda, x, ldx, b, ldb, c, work, lwork)
ZQRT17
Definition zqrt17.f:153
Here is the call graph for this function:
Here is the caller graph for this function: