174 SUBROUTINE dormr3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C,
183 CHARACTER SIDE, TRANS
184 INTEGER INFO, K, L, LDA, LDC, M, N
187 DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
194 INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
211 left = lsame( side,
'L' )
212 notran = lsame( trans,
'N' )
221 IF( .NOT.left .AND. .NOT.lsame( side,
'R' ) )
THEN
223 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans,
'T' ) )
THEN
225 ELSE IF( m.LT.0 )
THEN
227 ELSE IF( n.LT.0 )
THEN
229 ELSE IF( k.LT.0 .OR. k.GT.nq )
THEN
231 ELSE IF( l.LT.0 .OR. ( left .AND. ( l.GT.m ) ) .OR.
232 $ ( .NOT.left .AND. ( l.GT.n ) ) )
THEN
234 ELSE IF( lda.LT.max( 1, k ) )
THEN
236 ELSE IF( ldc.LT.max( 1, m ) )
THEN
240 CALL xerbla(
'DORMR3', -info )
246 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
249 IF( ( left .AND. .NOT.notran .OR. .NOT.left .AND. notran ) )
THEN
286 CALL dlarz( side, mi, ni, l, a( i, ja ), lda, tau( i ),
287 $ c( ic, jc ), ldc, work )
subroutine dlarz(side, m, n, l, v, incv, tau, c, ldc, work)
DLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
subroutine dormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
DORMR3 multiplies a general matrix by the orthogonal matrix from a RZ factorization determined by stz...