137 $ capply, info, work, rwork )
146 INTEGER n, lda, ldaf, info
150 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
151 REAL c( * ), rwork( * )
158 REAL ainvnm, anorm, tmp
180 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
187 upper =
lsame( uplo,
'U' )
188 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
190 ELSE IF( n.LT.0 )
THEN
192 ELSE IF( lda.LT.max( 1, n ) )
THEN
194 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
198 CALL xerbla(
'CLA_SYRCOND_C', -info )
202 IF (
lsame( uplo,
'U' ) ) up = .true.
212 tmp = tmp + cabs1( a( j, i ) ) / c( j )
215 tmp = tmp + cabs1( a( i, j ) ) / c( j )
219 tmp = tmp + cabs1( a( j, i ) )
222 tmp = tmp + cabs1( a( i, j ) )
226 anorm = max( anorm, tmp )
233 tmp = tmp + cabs1( a( i, j ) ) / c( j )
236 tmp = tmp + cabs1( a( j, i ) ) / c( j )
240 tmp = tmp + cabs1( a( i, j ) )
243 tmp = tmp + cabs1( a( j, i ) )
247 anorm = max( anorm, tmp )
256 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
266 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
273 work( i ) = work( i ) * rwork( i )
277 CALL csytrs(
'U', n, 1, af, ldaf, ipiv,
280 CALL csytrs(
'L', n, 1, af, ldaf, ipiv,
288 work( i ) = work( i ) * c( i )
297 work( i ) = work( i ) * c( i )
302 CALL csytrs(
'U', n, 1, af, ldaf, ipiv,
305 CALL csytrs(
'L', n, 1, af, ldaf, ipiv,
312 work( i ) = work( i ) * rwork( i )
320 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
real function cla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefin...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME