LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cla_syrcond_c.f
Go to the documentation of this file.
1*> \brief \b CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_SYRCOND_C + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syrcond_c.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syrcond_c.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syrcond_c.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* REAL FUNCTION CLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
22* CAPPLY, INFO, WORK, RWORK )
23*
24* .. Scalar Arguments ..
25* CHARACTER UPLO
26* LOGICAL CAPPLY
27* INTEGER N, LDA, LDAF, INFO
28* ..
29* .. Array Arguments ..
30* INTEGER IPIV( * )
31* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
32* REAL C( * ), RWORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> CLA_SYRCOND_C Computes the infinity norm condition number of
42*> op(A) * inv(diag(C)) where C is a REAL vector.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] UPLO
49*> \verbatim
50*> UPLO is CHARACTER*1
51*> = 'U': Upper triangle of A is stored;
52*> = 'L': Lower triangle of A is stored.
53*> \endverbatim
54*>
55*> \param[in] N
56*> \verbatim
57*> N is INTEGER
58*> The number of linear equations, i.e., the order of the
59*> matrix A. N >= 0.
60*> \endverbatim
61*>
62*> \param[in] A
63*> \verbatim
64*> A is COMPLEX array, dimension (LDA,N)
65*> On entry, the N-by-N matrix A
66*> \endverbatim
67*>
68*> \param[in] LDA
69*> \verbatim
70*> LDA is INTEGER
71*> The leading dimension of the array A. LDA >= max(1,N).
72*> \endverbatim
73*>
74*> \param[in] AF
75*> \verbatim
76*> AF is COMPLEX array, dimension (LDAF,N)
77*> The block diagonal matrix D and the multipliers used to
78*> obtain the factor U or L as computed by CSYTRF.
79*> \endverbatim
80*>
81*> \param[in] LDAF
82*> \verbatim
83*> LDAF is INTEGER
84*> The leading dimension of the array AF. LDAF >= max(1,N).
85*> \endverbatim
86*>
87*> \param[in] IPIV
88*> \verbatim
89*> IPIV is INTEGER array, dimension (N)
90*> Details of the interchanges and the block structure of D
91*> as determined by CSYTRF.
92*> \endverbatim
93*>
94*> \param[in] C
95*> \verbatim
96*> C is REAL array, dimension (N)
97*> The vector C in the formula op(A) * inv(diag(C)).
98*> \endverbatim
99*>
100*> \param[in] CAPPLY
101*> \verbatim
102*> CAPPLY is LOGICAL
103*> If .TRUE. then access the vector C in the formula above.
104*> \endverbatim
105*>
106*> \param[out] INFO
107*> \verbatim
108*> INFO is INTEGER
109*> = 0: Successful exit.
110*> i > 0: The ith argument is invalid.
111*> \endverbatim
112*>
113*> \param[out] WORK
114*> \verbatim
115*> WORK is COMPLEX array, dimension (2*N).
116*> Workspace.
117*> \endverbatim
118*>
119*> \param[out] RWORK
120*> \verbatim
121*> RWORK is REAL array, dimension (N).
122*> Workspace.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup la_hercond
134*
135* =====================================================================
136 REAL function cla_syrcond_c( uplo, n, a, lda, af, ldaf, ipiv, c,
137 $ capply, info, work, rwork )
138*
139* -- LAPACK computational routine --
140* -- LAPACK is a software package provided by Univ. of Tennessee, --
141* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142*
143* .. Scalar Arguments ..
144 CHARACTER uplo
145 LOGICAL capply
146 INTEGER n, lda, ldaf, info
147* ..
148* .. Array Arguments ..
149 INTEGER ipiv( * )
150 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
151 REAL c( * ), rwork( * )
152* ..
153*
154* =====================================================================
155*
156* .. Local Scalars ..
157 INTEGER kase
158 REAL ainvnm, anorm, tmp
159 INTEGER i, j
160 LOGICAL up, upper
161 COMPLEX zdum
162* ..
163* .. Local Arrays ..
164 INTEGER isave( 3 )
165* ..
166* .. External Functions ..
167 LOGICAL lsame
168 EXTERNAL lsame
169* ..
170* .. External Subroutines ..
171 EXTERNAL clacn2, csytrs, xerbla
172* ..
173* .. Intrinsic Functions ..
174 INTRINSIC abs, max
175* ..
176* .. Statement Functions ..
177 REAL cabs1
178* ..
179* .. Statement Function Definitions ..
180 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
181* ..
182* .. Executable Statements ..
183*
184 cla_syrcond_c = 0.0e+0
185*
186 info = 0
187 upper = lsame( uplo, 'U' )
188 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
189 info = -1
190 ELSE IF( n.LT.0 ) THEN
191 info = -2
192 ELSE IF( lda.LT.max( 1, n ) ) THEN
193 info = -4
194 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
195 info = -6
196 END IF
197 IF( info.NE.0 ) THEN
198 CALL xerbla( 'CLA_SYRCOND_C', -info )
199 RETURN
200 END IF
201 up = .false.
202 IF ( lsame( uplo, 'U' ) ) up = .true.
203*
204* Compute norm of op(A)*op2(C).
205*
206 anorm = 0.0e+0
207 IF ( up ) THEN
208 DO i = 1, n
209 tmp = 0.0e+0
210 IF ( capply ) THEN
211 DO j = 1, i
212 tmp = tmp + cabs1( a( j, i ) ) / c( j )
213 END DO
214 DO j = i+1, n
215 tmp = tmp + cabs1( a( i, j ) ) / c( j )
216 END DO
217 ELSE
218 DO j = 1, i
219 tmp = tmp + cabs1( a( j, i ) )
220 END DO
221 DO j = i+1, n
222 tmp = tmp + cabs1( a( i, j ) )
223 END DO
224 END IF
225 rwork( i ) = tmp
226 anorm = max( anorm, tmp )
227 END DO
228 ELSE
229 DO i = 1, n
230 tmp = 0.0e+0
231 IF ( capply ) THEN
232 DO j = 1, i
233 tmp = tmp + cabs1( a( i, j ) ) / c( j )
234 END DO
235 DO j = i+1, n
236 tmp = tmp + cabs1( a( j, i ) ) / c( j )
237 END DO
238 ELSE
239 DO j = 1, i
240 tmp = tmp + cabs1( a( i, j ) )
241 END DO
242 DO j = i+1, n
243 tmp = tmp + cabs1( a( j, i ) )
244 END DO
245 END IF
246 rwork( i ) = tmp
247 anorm = max( anorm, tmp )
248 END DO
249 END IF
250*
251* Quick return if possible.
252*
253 IF( n.EQ.0 ) THEN
254 cla_syrcond_c = 1.0e+0
255 RETURN
256 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
257 RETURN
258 END IF
259*
260* Estimate the norm of inv(op(A)).
261*
262 ainvnm = 0.0e+0
263*
264 kase = 0
265 10 CONTINUE
266 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
267 IF( kase.NE.0 ) THEN
268 IF( kase.EQ.2 ) THEN
269*
270* Multiply by R.
271*
272 DO i = 1, n
273 work( i ) = work( i ) * rwork( i )
274 END DO
275*
276 IF ( up ) THEN
277 CALL csytrs( 'U', n, 1, af, ldaf, ipiv,
278 $ work, n, info )
279 ELSE
280 CALL csytrs( 'L', n, 1, af, ldaf, ipiv,
281 $ work, n, info )
282 ENDIF
283*
284* Multiply by inv(C).
285*
286 IF ( capply ) THEN
287 DO i = 1, n
288 work( i ) = work( i ) * c( i )
289 END DO
290 END IF
291 ELSE
292*
293* Multiply by inv(C**T).
294*
295 IF ( capply ) THEN
296 DO i = 1, n
297 work( i ) = work( i ) * c( i )
298 END DO
299 END IF
300*
301 IF ( up ) THEN
302 CALL csytrs( 'U', n, 1, af, ldaf, ipiv,
303 $ work, n, info )
304 ELSE
305 CALL csytrs( 'L', n, 1, af, ldaf, ipiv,
306 $ work, n, info )
307 END IF
308*
309* Multiply by R.
310*
311 DO i = 1, n
312 work( i ) = work( i ) * rwork( i )
313 END DO
314 END IF
315 GO TO 10
316 END IF
317*
318* Compute the estimate of the reciprocal condition number.
319*
320 IF( ainvnm .NE. 0.0e+0 )
321 $ cla_syrcond_c = 1.0e+0 / ainvnm
322*
323 RETURN
324*
325* End of CLA_SYRCOND_C
326*
327 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
Definition csytrs.f:120
real function cla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefin...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48