LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssygv()

subroutine ssygv ( integer itype,
character jobz,
character uplo,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) w,
real, dimension( * ) work,
integer lwork,
integer info )

SSYGV

Download SSYGV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYGV computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
!> Here A and B are assumed to be symmetric and B is also
!> positive definite.
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          matrix Z of eigenvectors.  The eigenvectors are normalized
!>          as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
!>          or the lower triangle (if UPLO='L') of A, including the
!>          diagonal, is destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB, N)
!>          On entry, the symmetric positive definite matrix B.
!>          If UPLO = 'U', the leading N-by-N upper triangular part of B
!>          contains the upper triangular part of the matrix B.
!>          If UPLO = 'L', the leading N-by-N lower triangular part of B
!>          contains the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= max(1,3*N-1).
!>          For optimal efficiency, LWORK >= (NB+2)*N,
!>          where NB is the blocksize for SSYTRD returned by ILAENV.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  SPOTRF or SSYEV returned an error code:
!>             <= N:  if INFO = i, SSYEV failed to converge;
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 171 of file ssygv.f.

174*
175* -- LAPACK driver routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178*
179* .. Scalar Arguments ..
180 CHARACTER JOBZ, UPLO
181 INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
182* ..
183* .. Array Arguments ..
184 REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
185* ..
186*
187* =====================================================================
188*
189* .. Parameters ..
190 REAL ONE
191 parameter( one = 1.0e+0 )
192* ..
193* .. Local Scalars ..
194 LOGICAL LQUERY, UPPER, WANTZ
195 CHARACTER TRANS
196 INTEGER LWKMIN, LWKOPT, NB, NEIG
197* ..
198* .. External Functions ..
199 LOGICAL LSAME
200 INTEGER ILAENV
201 REAL SROUNDUP_LWORK
202 EXTERNAL ilaenv, lsame, sroundup_lwork
203* ..
204* .. External Subroutines ..
205 EXTERNAL spotrf, ssyev, ssygst, strmm, strsm,
206 $ xerbla
207* ..
208* .. Intrinsic Functions ..
209 INTRINSIC max
210* ..
211* .. Executable Statements ..
212*
213* Test the input parameters.
214*
215 wantz = lsame( jobz, 'V' )
216 upper = lsame( uplo, 'U' )
217 lquery = ( lwork.EQ.-1 )
218*
219 info = 0
220 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
221 info = -1
222 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
223 info = -2
224 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
225 info = -3
226 ELSE IF( n.LT.0 ) THEN
227 info = -4
228 ELSE IF( lda.LT.max( 1, n ) ) THEN
229 info = -6
230 ELSE IF( ldb.LT.max( 1, n ) ) THEN
231 info = -8
232 END IF
233*
234 IF( info.EQ.0 ) THEN
235 lwkmin = max( 1, 3*n - 1 )
236 nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
237 lwkopt = max( lwkmin, ( nb + 2 )*n )
238 work( 1 ) = sroundup_lwork(lwkopt)
239*
240 IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
241 info = -11
242 END IF
243 END IF
244*
245 IF( info.NE.0 ) THEN
246 CALL xerbla( 'SSYGV ', -info )
247 RETURN
248 ELSE IF( lquery ) THEN
249 RETURN
250 END IF
251*
252* Quick return if possible
253*
254 IF( n.EQ.0 )
255 $ RETURN
256*
257* Form a Cholesky factorization of B.
258*
259 CALL spotrf( uplo, n, b, ldb, info )
260 IF( info.NE.0 ) THEN
261 info = n + info
262 RETURN
263 END IF
264*
265* Transform problem to standard eigenvalue problem and solve.
266*
267 CALL ssygst( itype, uplo, n, a, lda, b, ldb, info )
268 CALL ssyev( jobz, uplo, n, a, lda, w, work, lwork, info )
269*
270 IF( wantz ) THEN
271*
272* Backtransform eigenvectors to the original problem.
273*
274 neig = n
275 IF( info.GT.0 )
276 $ neig = info - 1
277 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
278*
279* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
280* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
281*
282 IF( upper ) THEN
283 trans = 'N'
284 ELSE
285 trans = 'T'
286 END IF
287*
288 CALL strsm( 'Left', uplo, trans, 'Non-unit', n, neig,
289 $ one,
290 $ b, ldb, a, lda )
291*
292 ELSE IF( itype.EQ.3 ) THEN
293*
294* For B*A*x=(lambda)*x;
295* backtransform eigenvectors: x = L*y or U**T*y
296*
297 IF( upper ) THEN
298 trans = 'T'
299 ELSE
300 trans = 'N'
301 END IF
302*
303 CALL strmm( 'Left', uplo, trans, 'Non-unit', n, neig,
304 $ one,
305 $ b, ldb, a, lda )
306 END IF
307 END IF
308*
309 work( 1 ) = sroundup_lwork(lwkopt)
310 RETURN
311*
312* End of SSYGV
313*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)
SSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyev.f:130
subroutine ssygst(itype, uplo, n, a, lda, b, ldb, info)
SSYGST
Definition ssygst.f:125
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine spotrf(uplo, n, a, lda, info)
SPOTRF
Definition spotrf.f:105
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
subroutine strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRSM
Definition strsm.f:181
Here is the call graph for this function:
Here is the caller graph for this function: