LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ strt02()

subroutine strt02 ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldx, * ) x,
integer ldx,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) work,
real resid )

STRT02

Purpose:
!> !> STRT02 computes the residual for the computed solution to a !> triangular system of linear equations op(A)*X = B, where A is a !> triangular matrix. The test ratio is the maximum over !> norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ), !> where op(A) = A or A**T, b is the column of B, x is the solution !> vector, and EPS is the machine epsilon. !> The norm used is the 1-norm. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]TRANS
!> TRANS is CHARACTER*1 !> Specifies the operation applied to A. !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !>
[in]DIAG
!> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices X and B. NRHS >= 0. !>
[in]A
!> A is REAL array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading n by n !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading n by n lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[in]X
!> X is REAL array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[in]B
!> B is REAL array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]WORK
!> WORK is REAL array, dimension (N) !>
[out]RESID
!> RESID is REAL !> The maximum over the number of right hand sides of !> norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ). !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 148 of file strt02.f.

150*
151* -- LAPACK test routine --
152* -- LAPACK is a software package provided by Univ. of Tennessee, --
153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154*
155* .. Scalar Arguments ..
156 CHARACTER DIAG, TRANS, UPLO
157 INTEGER LDA, LDB, LDX, N, NRHS
158 REAL RESID
159* ..
160* .. Array Arguments ..
161 REAL A( LDA, * ), B( LDB, * ), WORK( * ),
162 $ X( LDX, * )
163* ..
164*
165* =====================================================================
166*
167* .. Parameters ..
168 REAL ZERO, ONE
169 parameter( zero = 0.0e+0, one = 1.0e+0 )
170* ..
171* .. Local Scalars ..
172 INTEGER J
173 REAL ANORM, BNORM, EPS, XNORM
174* ..
175* .. External Functions ..
176 LOGICAL LSAME
177 REAL SASUM, SLAMCH, SLANTR
178 EXTERNAL lsame, sasum, slamch, slantr
179* ..
180* .. External Subroutines ..
181 EXTERNAL saxpy, scopy, strmv
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC max
185* ..
186* .. Executable Statements ..
187*
188* Quick exit if N = 0 or NRHS = 0
189*
190 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
191 resid = zero
192 RETURN
193 END IF
194*
195* Compute the 1-norm of op(A).
196*
197 IF( lsame( trans, 'N' ) ) THEN
198 anorm = slantr( '1', uplo, diag, n, n, a, lda, work )
199 ELSE
200 anorm = slantr( 'I', uplo, diag, n, n, a, lda, work )
201 END IF
202*
203* Exit with RESID = 1/EPS if ANORM = 0.
204*
205 eps = slamch( 'Epsilon' )
206 IF( anorm.LE.zero ) THEN
207 resid = one / eps
208 RETURN
209 END IF
210*
211* Compute the maximum over the number of right hand sides of
212* norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS )
213*
214 resid = zero
215 DO 10 j = 1, nrhs
216 CALL scopy( n, x( 1, j ), 1, work, 1 )
217 CALL strmv( uplo, trans, diag, n, a, lda, work, 1 )
218 CALL saxpy( n, -one, b( 1, j ), 1, work, 1 )
219 bnorm = sasum( n, work, 1 )
220 xnorm = sasum( n, x( 1, j ), 1 )
221 IF( xnorm.LE.zero ) THEN
222 resid = one / eps
223 ELSE
224 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
225 END IF
226 10 CONTINUE
227*
228 RETURN
229*
230* End of STRT02
231*
real function sasum(n, sx, incx)
SASUM
Definition sasum.f:72
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slantr(norm, uplo, diag, m, n, a, lda, work)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slantr.f:140
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine strmv(uplo, trans, diag, n, a, lda, x, incx)
STRMV
Definition strmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: