LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ claunhr_col_getrfnp2()

recursive subroutine claunhr_col_getrfnp2 ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) d,
integer info )

CLAUNHR_COL_GETRFNP2

Download CLAUNHR_COL_GETRFNP2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
!> pivoting of a complex general M-by-N matrix A. The factorization has
!> the form:
!>
!>     A - S = L * U,
!>
!> where:
!>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
!>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
!>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
!>    i-1 steps of Gaussian elimination. This means that the diagonal
!>    element at each step of  Gaussian elimination is at
!>    least one in absolute value (so that division-by-zero not
!>    possible during the division by the diagonal element);
!>
!>    L is a M-by-N lower triangular matrix with unit diagonal elements
!>    (lower trapezoidal if M > N);
!>
!>    and U is a M-by-N upper triangular matrix
!>    (upper trapezoidal if M < N).
!>
!> This routine is an auxiliary routine used in the Householder
!> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is
!> applied to an M-by-N matrix A with orthonormal columns, where each
!> element is bounded by one in absolute value. With the choice of
!> the matrix S above, one can show that the diagonal element at each
!> step of Gaussian elimination is the largest (in absolute value) in
!> the column on or below the diagonal, so that no pivoting is required
!> for numerical stability [1].
!>
!> For more details on the Householder reconstruction algorithm,
!> including the modified LU factorization, see [1].
!>
!> This is the recursive version of the LU factorization algorithm.
!> Denote A - S by B. The algorithm divides the matrix B into four
!> submatrices:
!>
!>        [  B11 | B12  ]  where B11 is n1 by n1,
!>    B = [ -----|----- ]        B21 is (m-n1) by n1,
!>        [  B21 | B22  ]        B12 is n1 by n2,
!>                               B22 is (m-n1) by n2,
!>                               with n1 = min(m,n)/2, n2 = n-n1.
!>
!>
!> The subroutine calls itself to factor B11, solves for B21,
!> solves for B12, updates B22, then calls itself to factor B22.
!>
!> For more details on the recursive LU algorithm, see [2].
!>
!> CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
!> routine CLAUNHR_COL_GETRFNP, which uses blocked code calling
!> Level 3 BLAS to update the submatrix. However, CLAUNHR_COL_GETRFNP2
!> is self-sufficient and can be used without CLAUNHR_COL_GETRFNP.
!>
!> [1] ,
!>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
!>     E. Solomonik, J. Parallel Distrib. Comput.,
!>     vol. 85, pp. 3-31, 2015.
!>
!> [2] , F. Gustavson, IBM J. of Res. and Dev.,
!>     vol. 41, no. 6, pp. 737-755, 1997.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the M-by-N matrix to be factored.
!>          On exit, the factors L and U from the factorization
!>          A-S=L*U; the unit diagonal elements of L are not stored.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]D
!>          D is COMPLEX array, dimension min(M,N)
!>          The diagonal elements of the diagonal M-by-N sign matrix S,
!>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
!>          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!>
!> November 2019, Igor Kozachenko,
!>                Computer Science Division,
!>                University of California, Berkeley
!>
!> 

Definition at line 164 of file claunhr_col_getrfnp2.f.

166 IMPLICIT NONE
167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171*
172* .. Scalar Arguments ..
173 INTEGER INFO, LDA, M, N
174* ..
175* .. Array Arguments ..
176 COMPLEX A( LDA, * ), D( * )
177* ..
178*
179* =====================================================================
180*
181* .. Parameters ..
182 REAL ONE
183 parameter( one = 1.0e+0 )
184 COMPLEX CONE
185 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
186* ..
187* .. Local Scalars ..
188 REAL SFMIN
189 INTEGER I, IINFO, N1, N2
190 COMPLEX Z
191* ..
192* .. External Functions ..
193 REAL SLAMCH
194 EXTERNAL slamch
195* ..
196* .. External Subroutines ..
197 EXTERNAL cgemm, cscal, ctrsm, xerbla
198* ..
199* .. Intrinsic Functions ..
200 INTRINSIC abs, real, cmplx, aimag, sign, max, min
201* ..
202* .. Statement Functions ..
203 DOUBLE PRECISION CABS1
204* ..
205* .. Statement Function definitions ..
206 cabs1( z ) = abs( real( z ) ) + abs( aimag( z ) )
207* ..
208* .. Executable Statements ..
209*
210* Test the input parameters
211*
212 info = 0
213 IF( m.LT.0 ) THEN
214 info = -1
215 ELSE IF( n.LT.0 ) THEN
216 info = -2
217 ELSE IF( lda.LT.max( 1, m ) ) THEN
218 info = -4
219 END IF
220 IF( info.NE.0 ) THEN
221 CALL xerbla( 'CLAUNHR_COL_GETRFNP2', -info )
222 RETURN
223 END IF
224*
225* Quick return if possible
226*
227 IF( min( m, n ).EQ.0 )
228 $ RETURN
229
230 IF ( m.EQ.1 ) THEN
231*
232* One row case, (also recursion termination case),
233* use unblocked code
234*
235* Transfer the sign
236*
237 d( 1 ) = cmplx( -sign( one, real( a( 1, 1 ) ) ) )
238*
239* Construct the row of U
240*
241 a( 1, 1 ) = a( 1, 1 ) - d( 1 )
242*
243 ELSE IF( n.EQ.1 ) THEN
244*
245* One column case, (also recursion termination case),
246* use unblocked code
247*
248* Transfer the sign
249*
250 d( 1 ) = cmplx( -sign( one, real( a( 1, 1 ) ) ) )
251*
252* Construct the row of U
253*
254 a( 1, 1 ) = a( 1, 1 ) - d( 1 )
255*
256* Scale the elements 2:M of the column
257*
258* Determine machine safe minimum
259*
260 sfmin = slamch('S')
261*
262* Construct the subdiagonal elements of L
263*
264 IF( cabs1( a( 1, 1 ) ) .GE. sfmin ) THEN
265 CALL cscal( m-1, cone / a( 1, 1 ), a( 2, 1 ), 1 )
266 ELSE
267 DO i = 2, m
268 a( i, 1 ) = a( i, 1 ) / a( 1, 1 )
269 END DO
270 END IF
271*
272 ELSE
273*
274* Divide the matrix B into four submatrices
275*
276 n1 = min( m, n ) / 2
277 n2 = n-n1
278
279*
280* Factor B11, recursive call
281*
282 CALL claunhr_col_getrfnp2( n1, n1, a, lda, d, iinfo )
283*
284* Solve for B21
285*
286 CALL ctrsm( 'R', 'U', 'N', 'N', m-n1, n1, cone, a, lda,
287 $ a( n1+1, 1 ), lda )
288*
289* Solve for B12
290*
291 CALL ctrsm( 'L', 'L', 'N', 'U', n1, n2, cone, a, lda,
292 $ a( 1, n1+1 ), lda )
293*
294* Update B22, i.e. compute the Schur complement
295* B22 := B22 - B21*B12
296*
297 CALL cgemm( 'N', 'N', m-n1, n2, n1, -cone, a( n1+1, 1 ),
298 $ lda,
299 $ a( 1, n1+1 ), lda, cone, a( n1+1, n1+1 ), lda )
300*
301* Factor B22, recursive call
302*
303 CALL claunhr_col_getrfnp2( m-n1, n2, a( n1+1, n1+1 ), lda,
304 $ d( n1+1 ), iinfo )
305*
306 END IF
307 RETURN
308*
309* End of CLAUNHR_COL_GETRFNP2
310*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
recursive subroutine claunhr_col_getrfnp2(m, n, a, lda, d, info)
CLAUNHR_COL_GETRFNP2
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
Here is the call graph for this function:
Here is the caller graph for this function: