LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zungr2()

subroutine zungr2 ( integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( * ) work,
integer info )

ZUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).

Download ZUNGR2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZUNGR2 generates an m by n complex matrix Q with orthonormal rows,
!> which is defined as the last m rows of a product of k elementary
!> reflectors of order n
!>
!>       Q  =  H(1)**H H(2)**H . . . H(k)**H
!>
!> as returned by ZGERQF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. N >= M.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. M >= K >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the (m-k+i)-th row must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by ZGERQF in the last k rows of its array argument
!>          A.
!>          On exit, the m-by-n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is COMPLEX*16 array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by ZGERQF.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file zungr2.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX*16 ONE, ZERO
128 parameter( one = ( 1.0d+0, 0.0d+0 ),
129 $ zero = ( 0.0d+0, 0.0d+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, II, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL xerbla, zlacgv, zlarf1l, zscal
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC dconjg, max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'ZUNGR2', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( m.LE.0 )
162 $ RETURN
163*
164 IF( k.LT.m ) THEN
165*
166* Initialise rows 1:m-k to rows of the unit matrix
167*
168 DO 20 j = 1, n
169 DO 10 l = 1, m - k
170 a( l, j ) = zero
171 10 CONTINUE
172 IF( j.GT.n-m .AND. j.LE.n-k )
173 $ a( m-n+j, j ) = one
174 20 CONTINUE
175 END IF
176*
177 DO 40 i = 1, k
178 ii = m - k + i
179*
180* Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
181*
182 CALL zlacgv( n-m+ii-1, a( ii, 1 ), lda )
183 CALL zlarf1l( 'Right', ii-1, n-m+ii, a( ii, 1 ), lda,
184 $ conjg( tau( i ) ), a, lda, work )
185 CALL zscal( n-m+ii-1, -tau( i ), a( ii, 1 ), lda )
186 CALL zlacgv( n-m+ii-1, a( ii, 1 ), lda )
187 a( ii, n-m+ii ) = one - dconjg( tau( i ) )
188*
189* Set A(m-k+i,n-k+i+1:n) to zero
190*
191 DO 30 l = n - m + ii + 1, n
192 a( ii, l ) = zero
193 30 CONTINUE
194 40 CONTINUE
195 RETURN
196*
197* End of ZUNGR2
198*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine zlarf1l(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1L applies an elementary reflector to a general rectangular
Definition zlarf1l.f:130
Here is the call graph for this function:
Here is the caller graph for this function: