LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgtsvx()

subroutine cgtsvx ( character fact,
character trans,
integer n,
integer nrhs,
complex, dimension( * ) dl,
complex, dimension( * ) d,
complex, dimension( * ) du,
complex, dimension( * ) dlf,
complex, dimension( * ) df,
complex, dimension( * ) duf,
complex, dimension( * ) du2,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CGTSVX computes the solution to system of linear equations A * X = B for GT matrices

Download CGTSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGTSVX uses the LU factorization to compute the solution to a complex
!> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
!> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
!> matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed:
!>
!> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
!>    as A = L * U, where L is a product of permutation and unit lower
!>    bidiagonal matrices and U is upper triangular with nonzeros in
!>    only the main diagonal and first two superdiagonals.
!>
!> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
!>    returns with INFO = i. Otherwise, the factored form of A is used
!>    to estimate the condition number of the matrix A.  If the
!>    reciprocal of the condition number is less than machine precision,
!>    INFO = N+1 is returned as a warning, but the routine still goes on
!>    to solve for X and compute error bounds as described below.
!>
!> 3. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 4. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of A has been
!>          supplied on entry.
!>          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored form
!>                  of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not
!>                  be modified.
!>          = 'N':  The matrix will be copied to DLF, DF, and DUF
!>                  and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations:
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose)
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]DL
!>          DL is COMPLEX array, dimension (N-1)
!>          The (n-1) subdiagonal elements of A.
!> 
[in]D
!>          D is COMPLEX array, dimension (N)
!>          The n diagonal elements of A.
!> 
[in]DU
!>          DU is COMPLEX array, dimension (N-1)
!>          The (n-1) superdiagonal elements of A.
!> 
[in,out]DLF
!>          DLF is COMPLEX array, dimension (N-1)
!>          If FACT = 'F', then DLF is an input argument and on entry
!>          contains the (n-1) multipliers that define the matrix L from
!>          the LU factorization of A as computed by CGTTRF.
!>
!>          If FACT = 'N', then DLF is an output argument and on exit
!>          contains the (n-1) multipliers that define the matrix L from
!>          the LU factorization of A.
!> 
[in,out]DF
!>          DF is COMPLEX array, dimension (N)
!>          If FACT = 'F', then DF is an input argument and on entry
!>          contains the n diagonal elements of the upper triangular
!>          matrix U from the LU factorization of A.
!>
!>          If FACT = 'N', then DF is an output argument and on exit
!>          contains the n diagonal elements of the upper triangular
!>          matrix U from the LU factorization of A.
!> 
[in,out]DUF
!>          DUF is COMPLEX array, dimension (N-1)
!>          If FACT = 'F', then DUF is an input argument and on entry
!>          contains the (n-1) elements of the first superdiagonal of U.
!>
!>          If FACT = 'N', then DUF is an output argument and on exit
!>          contains the (n-1) elements of the first superdiagonal of U.
!> 
[in,out]DU2
!>          DU2 is COMPLEX array, dimension (N-2)
!>          If FACT = 'F', then DU2 is an input argument and on entry
!>          contains the (n-2) elements of the second superdiagonal of
!>          U.
!>
!>          If FACT = 'N', then DU2 is an output argument and on exit
!>          contains the (n-2) elements of the second superdiagonal of
!>          U.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          If FACT = 'F', then IPIV is an input argument and on entry
!>          contains the pivot indices from the LU factorization of A as
!>          computed by CGTTRF.
!>
!>          If FACT = 'N', then IPIV is an output argument and on exit
!>          contains the pivot indices from the LU factorization of A;
!>          row i of the matrix was interchanged with row IPIV(i).
!>          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
!>          a row interchange was not required.
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The N-by-NRHS right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The estimate of the reciprocal condition number of the matrix
!>          A.  If RCOND is less than the machine precision (in
!>          particular, if RCOND = 0), the matrix is singular to working
!>          precision.  This condition is indicated by a return code of
!>          INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  U(i,i) is exactly zero.  The factorization
!>                       has not been completed unless i = N, but the
!>                       factor U is exactly singular, so the solution
!>                       and error bounds could not be computed.
!>                       RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 289 of file cgtsvx.f.

293*
294* -- LAPACK driver routine --
295* -- LAPACK is a software package provided by Univ. of Tennessee, --
296* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
297*
298* .. Scalar Arguments ..
299 CHARACTER FACT, TRANS
300 INTEGER INFO, LDB, LDX, N, NRHS
301 REAL RCOND
302* ..
303* .. Array Arguments ..
304 INTEGER IPIV( * )
305 REAL BERR( * ), FERR( * ), RWORK( * )
306 COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
307 $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
308 $ WORK( * ), X( LDX, * )
309* ..
310*
311* =====================================================================
312*
313* .. Parameters ..
314 REAL ZERO
315 parameter( zero = 0.0e+0 )
316* ..
317* .. Local Scalars ..
318 LOGICAL NOFACT, NOTRAN
319 CHARACTER NORM
320 REAL ANORM
321* ..
322* .. External Functions ..
323 LOGICAL LSAME
324 REAL CLANGT, SLAMCH
325 EXTERNAL lsame, clangt, slamch
326* ..
327* .. External Subroutines ..
328 EXTERNAL ccopy, cgtcon, cgtrfs, cgttrf, cgttrs,
329 $ clacpy,
330 $ xerbla
331* ..
332* .. Intrinsic Functions ..
333 INTRINSIC max
334* ..
335* .. Executable Statements ..
336*
337 info = 0
338 nofact = lsame( fact, 'N' )
339 notran = lsame( trans, 'N' )
340 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
341 info = -1
342 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
343 $ lsame( trans, 'C' ) ) THEN
344 info = -2
345 ELSE IF( n.LT.0 ) THEN
346 info = -3
347 ELSE IF( nrhs.LT.0 ) THEN
348 info = -4
349 ELSE IF( ldb.LT.max( 1, n ) ) THEN
350 info = -14
351 ELSE IF( ldx.LT.max( 1, n ) ) THEN
352 info = -16
353 END IF
354 IF( info.NE.0 ) THEN
355 CALL xerbla( 'CGTSVX', -info )
356 RETURN
357 END IF
358*
359 IF( nofact ) THEN
360*
361* Compute the LU factorization of A.
362*
363 CALL ccopy( n, d, 1, df, 1 )
364 IF( n.GT.1 ) THEN
365 CALL ccopy( n-1, dl, 1, dlf, 1 )
366 CALL ccopy( n-1, du, 1, duf, 1 )
367 END IF
368 CALL cgttrf( n, dlf, df, duf, du2, ipiv, info )
369*
370* Return if INFO is non-zero.
371*
372 IF( info.GT.0 )THEN
373 rcond = zero
374 RETURN
375 END IF
376 END IF
377*
378* Compute the norm of the matrix A.
379*
380 IF( notran ) THEN
381 norm = '1'
382 ELSE
383 norm = 'I'
384 END IF
385 anorm = clangt( norm, n, dl, d, du )
386*
387* Compute the reciprocal of the condition number of A.
388*
389 CALL cgtcon( norm, n, dlf, df, duf, du2, ipiv, anorm, rcond,
390 $ work,
391 $ info )
392*
393* Compute the solution vectors X.
394*
395 CALL clacpy( 'Full', n, nrhs, b, ldb, x, ldx )
396 CALL cgttrs( trans, n, nrhs, dlf, df, duf, du2, ipiv, x, ldx,
397 $ info )
398*
399* Use iterative refinement to improve the computed solutions and
400* compute error bounds and backward error estimates for them.
401*
402 CALL cgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
403 $ ipiv,
404 $ b, ldb, x, ldx, ferr, berr, work, rwork, info )
405*
406* Set INFO = N+1 if the matrix is singular to working precision.
407*
408 IF( rcond.LT.slamch( 'Epsilon' ) )
409 $ info = n + 1
410*
411 RETURN
412*
413* End of CGTSVX
414*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)
CGTCON
Definition cgtcon.f:139
subroutine cgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CGTRFS
Definition cgtrfs.f:209
subroutine cgttrf(n, dl, d, du, du2, ipiv, info)
CGTTRF
Definition cgttrf.f:122
subroutine cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
CGTTRS
Definition cgttrs.f:137
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clangt(norm, n, dl, d, du)
CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clangt.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: