LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgtsvx()

subroutine dgtsvx ( character  fact,
character  trans,
integer  n,
integer  nrhs,
double precision, dimension( * )  dl,
double precision, dimension( * )  d,
double precision, dimension( * )  du,
double precision, dimension( * )  dlf,
double precision, dimension( * )  df,
double precision, dimension( * )  duf,
double precision, dimension( * )  du2,
integer, dimension( * )  ipiv,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( ldx, * )  x,
integer  ldx,
double precision  rcond,
double precision, dimension( * )  ferr,
double precision, dimension( * )  berr,
double precision, dimension( * )  work,
integer, dimension( * )  iwork,
integer  info 
)

DGTSVX computes the solution to system of linear equations A * X = B for GT matrices

Download DGTSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGTSVX uses the LU factorization to compute the solution to a real
 system of linear equations A * X = B or A**T * X = B,
 where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are also
 provided.
Description:
 The following steps are performed:

 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
    as A = L * U, where L is a product of permutation and unit lower
    bidiagonal matrices and U is upper triangular with nonzeros in
    only the main diagonal and first two superdiagonals.

 2. If some U(i,i)=0, so that U is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.

 3. The system of equations is solved for X using the factored form
    of A.

 4. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.
Parameters
[in]FACT
          FACT is CHARACTER*1
          Specifies whether or not the factored form of A has been
          supplied on entry.
          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
                  will not be modified.
          = 'N':  The matrix will be copied to DLF, DF, and DUF
                  and factored.
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in]DL
          DL is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of A.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of A.
[in]DU
          DU is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) superdiagonal elements of A.
[in,out]DLF
          DLF is DOUBLE PRECISION array, dimension (N-1)
          If FACT = 'F', then DLF is an input argument and on entry
          contains the (n-1) multipliers that define the matrix L from
          the LU factorization of A as computed by DGTTRF.

          If FACT = 'N', then DLF is an output argument and on exit
          contains the (n-1) multipliers that define the matrix L from
          the LU factorization of A.
[in,out]DF
          DF is DOUBLE PRECISION array, dimension (N)
          If FACT = 'F', then DF is an input argument and on entry
          contains the n diagonal elements of the upper triangular
          matrix U from the LU factorization of A.

          If FACT = 'N', then DF is an output argument and on exit
          contains the n diagonal elements of the upper triangular
          matrix U from the LU factorization of A.
[in,out]DUF
          DUF is DOUBLE PRECISION array, dimension (N-1)
          If FACT = 'F', then DUF is an input argument and on entry
          contains the (n-1) elements of the first superdiagonal of U.

          If FACT = 'N', then DUF is an output argument and on exit
          contains the (n-1) elements of the first superdiagonal of U.
[in,out]DU2
          DU2 is DOUBLE PRECISION array, dimension (N-2)
          If FACT = 'F', then DU2 is an input argument and on entry
          contains the (n-2) elements of the second superdiagonal of
          U.

          If FACT = 'N', then DU2 is an output argument and on exit
          contains the (n-2) elements of the second superdiagonal of
          U.
[in,out]IPIV
          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains the pivot indices from the LU factorization of A as
          computed by DGTTRF.

          If FACT = 'N', then IPIV is an output argument and on exit
          contains the pivot indices from the LU factorization of A;
          row i of the matrix was interchanged with row IPIV(i).
          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
          a row interchange was not required.
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A.  If RCOND is less than the machine precision (in
          particular, if RCOND = 0), the matrix is singular to working
          precision.  This condition is indicated by a return code of
          INFO > 0.
[out]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (3*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  U(i,i) is exactly zero.  The factorization
                       has not been completed unless i = N, but the
                       factor U is exactly singular, so the solution
                       and error bounds could not be computed.
                       RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 290 of file dgtsvx.f.

293*
294* -- LAPACK driver routine --
295* -- LAPACK is a software package provided by Univ. of Tennessee, --
296* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
297*
298* .. Scalar Arguments ..
299 CHARACTER FACT, TRANS
300 INTEGER INFO, LDB, LDX, N, NRHS
301 DOUBLE PRECISION RCOND
302* ..
303* .. Array Arguments ..
304 INTEGER IPIV( * ), IWORK( * )
305 DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
306 $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
307 $ FERR( * ), WORK( * ), X( LDX, * )
308* ..
309*
310* =====================================================================
311*
312* .. Parameters ..
313 DOUBLE PRECISION ZERO
314 parameter( zero = 0.0d+0 )
315* ..
316* .. Local Scalars ..
317 LOGICAL NOFACT, NOTRAN
318 CHARACTER NORM
319 DOUBLE PRECISION ANORM
320* ..
321* .. External Functions ..
322 LOGICAL LSAME
323 DOUBLE PRECISION DLAMCH, DLANGT
324 EXTERNAL lsame, dlamch, dlangt
325* ..
326* .. External Subroutines ..
327 EXTERNAL dcopy, dgtcon, dgtrfs, dgttrf, dgttrs, dlacpy,
328 $ xerbla
329* ..
330* .. Intrinsic Functions ..
331 INTRINSIC max
332* ..
333* .. Executable Statements ..
334*
335 info = 0
336 nofact = lsame( fact, 'N' )
337 notran = lsame( trans, 'N' )
338 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
339 info = -1
340 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
341 $ lsame( trans, 'C' ) ) THEN
342 info = -2
343 ELSE IF( n.LT.0 ) THEN
344 info = -3
345 ELSE IF( nrhs.LT.0 ) THEN
346 info = -4
347 ELSE IF( ldb.LT.max( 1, n ) ) THEN
348 info = -14
349 ELSE IF( ldx.LT.max( 1, n ) ) THEN
350 info = -16
351 END IF
352 IF( info.NE.0 ) THEN
353 CALL xerbla( 'DGTSVX', -info )
354 RETURN
355 END IF
356*
357 IF( nofact ) THEN
358*
359* Compute the LU factorization of A.
360*
361 CALL dcopy( n, d, 1, df, 1 )
362 IF( n.GT.1 ) THEN
363 CALL dcopy( n-1, dl, 1, dlf, 1 )
364 CALL dcopy( n-1, du, 1, duf, 1 )
365 END IF
366 CALL dgttrf( n, dlf, df, duf, du2, ipiv, info )
367*
368* Return if INFO is non-zero.
369*
370 IF( info.GT.0 )THEN
371 rcond = zero
372 RETURN
373 END IF
374 END IF
375*
376* Compute the norm of the matrix A.
377*
378 IF( notran ) THEN
379 norm = '1'
380 ELSE
381 norm = 'I'
382 END IF
383 anorm = dlangt( norm, n, dl, d, du )
384*
385* Compute the reciprocal of the condition number of A.
386*
387 CALL dgtcon( norm, n, dlf, df, duf, du2, ipiv, anorm, rcond, work,
388 $ iwork, info )
389*
390* Compute the solution vectors X.
391*
392 CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
393 CALL dgttrs( trans, n, nrhs, dlf, df, duf, du2, ipiv, x, ldx,
394 $ info )
395*
396* Use iterative refinement to improve the computed solutions and
397* compute error bounds and backward error estimates for them.
398*
399 CALL dgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv,
400 $ b, ldb, x, ldx, ferr, berr, work, iwork, info )
401*
402* Set INFO = N+1 if the matrix is singular to working precision.
403*
404 IF( rcond.LT.dlamch( 'Epsilon' ) )
405 $ info = n + 1
406*
407 RETURN
408*
409* End of DGTSVX
410*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info)
DGTCON
Definition dgtcon.f:146
subroutine dgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGTRFS
Definition dgtrfs.f:209
subroutine dgttrf(n, dl, d, du, du2, ipiv, info)
DGTTRF
Definition dgttrf.f:124
subroutine dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
DGTTRS
Definition dgttrs.f:138
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlangt(norm, n, dl, d, du)
DLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlangt.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: