134 SUBROUTINE dgttrs( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B,
144 INTEGER INFO, LDB, N, NRHS
148 DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
155 INTEGER ITRANS, J, JB, NB
170 notran = ( trans.EQ.
'N' .OR. trans.EQ.
'n' )
171 IF( .NOT.notran .AND. .NOT.( trans.EQ.
'T' .OR. trans.EQ.
172 $
't' ) .AND. .NOT.( trans.EQ.
'C' .OR. trans.EQ.
'c' ) )
THEN
174 ELSE IF( n.LT.0 )
THEN
176 ELSE IF( nrhs.LT.0 )
THEN
178 ELSE IF( ldb.LT.max( n, 1 ) )
THEN
182 CALL xerbla(
'DGTTRS', -info )
188 IF( n.EQ.0 .OR. nrhs.EQ.0 )
204 nb = max( 1, ilaenv( 1,
'DGTTRS', trans, n, nrhs, -1, -1 ) )
207 IF( nb.GE.nrhs )
THEN
208 CALL dgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
210 DO 10 j = 1, nrhs, nb
211 jb = min( nrhs-j+1, nb )
212 CALL dgtts2( itrans, n, jb, dl, d, du, du2, ipiv, b( 1,
subroutine dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
DGTTRS
subroutine dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization compu...