136 SUBROUTINE dgttrs( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
145 INTEGER INFO, LDB, N, NRHS
149 DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
156 INTEGER ITRANS, J, JB, NB
171 notran = ( trans.EQ.
'N' .OR. trans.EQ.
'n' )
172 IF( .NOT.notran .AND. .NOT.( trans.EQ.
'T' .OR. trans.EQ.
173 $
't' ) .AND. .NOT.( trans.EQ.
'C' .OR. trans.EQ.
'c' ) )
THEN
175 ELSE IF( n.LT.0 )
THEN
177 ELSE IF( nrhs.LT.0 )
THEN
179 ELSE IF( ldb.LT.max( n, 1 ) )
THEN
183 CALL xerbla(
'DGTTRS', -info )
189 IF( n.EQ.0 .OR. nrhs.EQ.0 )
205 nb = max( 1, ilaenv( 1,
'DGTTRS', trans, n, nrhs, -1, -1 ) )
208 IF( nb.GE.nrhs )
THEN
209 CALL dgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
211 DO 10 j = 1, nrhs, nb
212 jb = min( nrhs-j+1, nb )
213 CALL dgtts2( itrans, n, jb, dl, d, du, du2, ipiv, b( 1, j ),
subroutine xerbla(srname, info)
subroutine dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
DGTTRS
subroutine dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization compu...