LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dorgbr.f
Go to the documentation of this file.
1*> \brief \b DORGBR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DORGBR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER VECT
23* INTEGER INFO, K, LDA, LWORK, M, N
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> DORGBR generates one of the real orthogonal matrices Q or P**T
36*> determined by DGEBRD when reducing a real matrix A to bidiagonal
37*> form: A = Q * B * P**T. Q and P**T are defined as products of
38*> elementary reflectors H(i) or G(i) respectively.
39*>
40*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
41*> is of order M:
42*> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
43*> columns of Q, where m >= n >= k;
44*> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
45*> M-by-M matrix.
46*>
47*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
48*> is of order N:
49*> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
50*> rows of P**T, where n >= m >= k;
51*> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
52*> an N-by-N matrix.
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] VECT
59*> \verbatim
60*> VECT is CHARACTER*1
61*> Specifies whether the matrix Q or the matrix P**T is
62*> required, as defined in the transformation applied by DGEBRD:
63*> = 'Q': generate Q;
64*> = 'P': generate P**T.
65*> \endverbatim
66*>
67*> \param[in] M
68*> \verbatim
69*> M is INTEGER
70*> The number of rows of the matrix Q or P**T to be returned.
71*> M >= 0.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The number of columns of the matrix Q or P**T to be returned.
78*> N >= 0.
79*> If VECT = 'Q', M >= N >= min(M,K);
80*> if VECT = 'P', N >= M >= min(N,K).
81*> \endverbatim
82*>
83*> \param[in] K
84*> \verbatim
85*> K is INTEGER
86*> If VECT = 'Q', the number of columns in the original M-by-K
87*> matrix reduced by DGEBRD.
88*> If VECT = 'P', the number of rows in the original K-by-N
89*> matrix reduced by DGEBRD.
90*> K >= 0.
91*> \endverbatim
92*>
93*> \param[in,out] A
94*> \verbatim
95*> A is DOUBLE PRECISION array, dimension (LDA,N)
96*> On entry, the vectors which define the elementary reflectors,
97*> as returned by DGEBRD.
98*> On exit, the M-by-N matrix Q or P**T.
99*> \endverbatim
100*>
101*> \param[in] LDA
102*> \verbatim
103*> LDA is INTEGER
104*> The leading dimension of the array A. LDA >= max(1,M).
105*> \endverbatim
106*>
107*> \param[in] TAU
108*> \verbatim
109*> TAU is DOUBLE PRECISION array, dimension
110*> (min(M,K)) if VECT = 'Q'
111*> (min(N,K)) if VECT = 'P'
112*> TAU(i) must contain the scalar factor of the elementary
113*> reflector H(i) or G(i), which determines Q or P**T, as
114*> returned by DGEBRD in its array argument TAUQ or TAUP.
115*> \endverbatim
116*>
117*> \param[out] WORK
118*> \verbatim
119*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
120*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
121*> \endverbatim
122*>
123*> \param[in] LWORK
124*> \verbatim
125*> LWORK is INTEGER
126*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
127*> For optimum performance LWORK >= min(M,N)*NB, where NB
128*> is the optimal blocksize.
129*>
130*> If LWORK = -1, then a workspace query is assumed; the routine
131*> only calculates the optimal size of the WORK array, returns
132*> this value as the first entry of the WORK array, and no error
133*> message related to LWORK is issued by XERBLA.
134*> \endverbatim
135*>
136*> \param[out] INFO
137*> \verbatim
138*> INFO is INTEGER
139*> = 0: successful exit
140*> < 0: if INFO = -i, the i-th argument had an illegal value
141*> \endverbatim
142*
143* Authors:
144* ========
145*
146*> \author Univ. of Tennessee
147*> \author Univ. of California Berkeley
148*> \author Univ. of Colorado Denver
149*> \author NAG Ltd.
150*
151*> \ingroup ungbr
152*
153* =====================================================================
154 SUBROUTINE dorgbr( VECT, M, N, K, A, LDA, TAU, WORK, LWORK,
155 $ INFO )
156*
157* -- LAPACK computational routine --
158* -- LAPACK is a software package provided by Univ. of Tennessee, --
159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160*
161* .. Scalar Arguments ..
162 CHARACTER VECT
163 INTEGER INFO, K, LDA, LWORK, M, N
164* ..
165* .. Array Arguments ..
166 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
167* ..
168*
169* =====================================================================
170*
171* .. Parameters ..
172 DOUBLE PRECISION ZERO, ONE
173 parameter( zero = 0.0d+0, one = 1.0d+0 )
174* ..
175* .. Local Scalars ..
176 LOGICAL LQUERY, WANTQ
177 INTEGER I, IINFO, J, LWKOPT, MN
178* ..
179* .. External Functions ..
180 LOGICAL LSAME
181 EXTERNAL lsame
182* ..
183* .. External Subroutines ..
184 EXTERNAL dorglq, dorgqr, xerbla
185* ..
186* .. Intrinsic Functions ..
187 INTRINSIC max, min
188* ..
189* .. Executable Statements ..
190*
191* Test the input arguments
192*
193 info = 0
194 wantq = lsame( vect, 'Q' )
195 mn = min( m, n )
196 lquery = ( lwork.EQ.-1 )
197 IF( .NOT.wantq .AND. .NOT.lsame( vect, 'P' ) ) THEN
198 info = -1
199 ELSE IF( m.LT.0 ) THEN
200 info = -2
201 ELSE IF( n.LT.0 .OR. ( wantq .AND. ( n.GT.m .OR. n.LT.min( m,
202 $ k ) ) ) .OR. ( .NOT.wantq .AND. ( m.GT.n .OR. m.LT.
203 $ min( n, k ) ) ) ) THEN
204 info = -3
205 ELSE IF( k.LT.0 ) THEN
206 info = -4
207 ELSE IF( lda.LT.max( 1, m ) ) THEN
208 info = -6
209 ELSE IF( lwork.LT.max( 1, mn ) .AND. .NOT.lquery ) THEN
210 info = -9
211 END IF
212*
213 IF( info.EQ.0 ) THEN
214 work( 1 ) = 1
215 IF( wantq ) THEN
216 IF( m.GE.k ) THEN
217 CALL dorgqr( m, n, k, a, lda, tau, work, -1, iinfo )
218 ELSE
219 IF( m.GT.1 ) THEN
220 CALL dorgqr( m-1, m-1, m-1, a, lda, tau, work, -1,
221 $ iinfo )
222 END IF
223 END IF
224 ELSE
225 IF( k.LT.n ) THEN
226 CALL dorglq( m, n, k, a, lda, tau, work, -1, iinfo )
227 ELSE
228 IF( n.GT.1 ) THEN
229 CALL dorglq( n-1, n-1, n-1, a, lda, tau, work, -1,
230 $ iinfo )
231 END IF
232 END IF
233 END IF
234 lwkopt = int( work( 1 ) )
235 lwkopt = max(lwkopt, mn)
236 END IF
237*
238 IF( info.NE.0 ) THEN
239 CALL xerbla( 'DORGBR', -info )
240 RETURN
241 ELSE IF( lquery ) THEN
242 work( 1 ) = lwkopt
243 RETURN
244 END IF
245*
246* Quick return if possible
247*
248 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
249 work( 1 ) = 1
250 RETURN
251 END IF
252*
253 IF( wantq ) THEN
254*
255* Form Q, determined by a call to DGEBRD to reduce an m-by-k
256* matrix
257*
258 IF( m.GE.k ) THEN
259*
260* If m >= k, assume m >= n >= k
261*
262 CALL dorgqr( m, n, k, a, lda, tau, work, lwork, iinfo )
263*
264 ELSE
265*
266* If m < k, assume m = n
267*
268* Shift the vectors which define the elementary reflectors one
269* column to the right, and set the first row and column of Q
270* to those of the unit matrix
271*
272 DO 20 j = m, 2, -1
273 a( 1, j ) = zero
274 DO 10 i = j + 1, m
275 a( i, j ) = a( i, j-1 )
276 10 CONTINUE
277 20 CONTINUE
278 a( 1, 1 ) = one
279 DO 30 i = 2, m
280 a( i, 1 ) = zero
281 30 CONTINUE
282 IF( m.GT.1 ) THEN
283*
284* Form Q(2:m,2:m)
285*
286 CALL dorgqr( m-1, m-1, m-1, a( 2, 2 ), lda, tau, work,
287 $ lwork, iinfo )
288 END IF
289 END IF
290 ELSE
291*
292* Form P**T, determined by a call to DGEBRD to reduce a k-by-n
293* matrix
294*
295 IF( k.LT.n ) THEN
296*
297* If k < n, assume k <= m <= n
298*
299 CALL dorglq( m, n, k, a, lda, tau, work, lwork, iinfo )
300*
301 ELSE
302*
303* If k >= n, assume m = n
304*
305* Shift the vectors which define the elementary reflectors one
306* row downward, and set the first row and column of P**T to
307* those of the unit matrix
308*
309 a( 1, 1 ) = one
310 DO 40 i = 2, n
311 a( i, 1 ) = zero
312 40 CONTINUE
313 DO 60 j = 2, n
314 DO 50 i = j - 1, 2, -1
315 a( i, j ) = a( i-1, j )
316 50 CONTINUE
317 a( 1, j ) = zero
318 60 CONTINUE
319 IF( n.GT.1 ) THEN
320*
321* Form P**T(2:n,2:n)
322*
323 CALL dorglq( n-1, n-1, n-1, a( 2, 2 ), lda, tau, work,
324 $ lwork, iinfo )
325 END IF
326 END IF
327 END IF
328 work( 1 ) = lwkopt
329 RETURN
330*
331* End of DORGBR
332*
333 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)
DORGBR
Definition dorgbr.f:156
subroutine dorglq(m, n, k, a, lda, tau, work, lwork, info)
DORGLQ
Definition dorglq.f:125
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:126